跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/10 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪詩涵
研究生(外文):Hung Shih Han
論文名稱:氫氧自由基對臭氧反應影響之探討
論文名稱(外文):The Investigation of Free Radicals on Ozonation
指導教授:張鎮南張鎮南引用關係
指導教授(外文):Chang Cheng Nan
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:109
中文關鍵詞:氫氧自由基(·OH)黃酸臭氧氧化還原電位水中溶臭氧香豆素 (coumarin)高效液相層析儀涅斯特方程式(Nernst方程式)芬頓 (Fenton)
外文關鍵詞:OH radicalscoumarinHPLCOzonationORPDO3HPLCNernst type modelFenton
相關次數:
  • 被引用被引用:3
  • 點閱點閱:990
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究採集之水樣為提供中台灣地區飲用水水源的德基水庫,利用XAD-8樹脂分離出五種有機物質,其中腐植酸佔29.7%、黃酸佔19.5%、疏水性中性物質佔31.2%、疏水性鹼性物質佔2.6%和佔15.7%的親水性物質。天然有機物物質(例如:腐植酸)在經過加氯消毒後,容易形成致癌物或其他消毒副產物有害人體健康,例如:TTHMFP和HAAFP (經過氯氣消毒程序所生成的物質);結果顯示黃酸形成TTHMFP和HAAFP分別為40.1和67.0 μg/mg DOC,而腐植酸形成TTHMFP和HAAFP為46.2和39.6 μg/mg DOC。
德基水庫原水為本研究臭氧反應主要的實驗對象。·OH為臭氧氧化兩個重要路徑中影響極大之中間產物,為探討此兩階段反應之詳細過程,本研究除了建立HPLC分析·OH之技術,並以臭氧氧化反應及Fenton反應系統分別模擬全氧化及間接攻擊之狀況,全部過程皆利用示波儀收集反應過程中之氧化還原電位(ORP)、水中溶臭氧(DO3)、pH的即時數據,並藉由可迅速分析大量資料的分光光譜儀來量測在波長254nm的吸光度,此外,利用高效液相層析儀量化臭氧系統和Fenton系統中分別的·OH 和Coumarin,再利用上述資料來討論臭氧反應機制以及建立臭氧反應中的模擬Nernst方程式。結果得到整個臭氧反應中直接臭氧攻擊佔37.1%而間接·OH反應佔62.9%。最後,利用碳13核磁共振光譜儀和傅立葉轉換紅外線分光光譜儀來探討經過原水臭氧反應後之官能基的改變,但因水樣遭受颱風影響甚大致使官能基變化不明顯。
This study collected natural water samples from Te-Chi Reservoir which provides major domestic water supply in metropolitan central Taiwan area. The water sample organic contents were extracted and classified into humic acids (HAs, 29.7%), fulvic acids (FAs, 19.5%), hydrophobic neutrals (31.2%), hydrophobic bases (2.6%) and hydrophilic fractions (15.7%) by XAD-8 resins. Traditionally, raw water is disinfected by chlorination and some species of natural organic matters (NOMs), e.g. humic acids and their related substances are easily to form carcinogenic or mutagenic by-products. Those substances are often measured via the formation of cancer-causing potentials such as Trihalomethane Formation Potential (THMFP) and Haloacetic Acid Formation Potential (HAAFP) after chlorination. The result shows the FAs have the high THMFP and HAAFP value which was 40.1 and 67.0 μg/mg DOC, respectively. Furthermore, the HAs have the second high values which were 46.2 and 39.6μg/mg DOC individually.
The Te-Chi Reservoir raw water was ozonated to investigate the 2-step oxidation reaction mechanisms for this study. The on-line data of oxidation reduction potential (ORP), dissolved ozone (DO3) and pH were collected by an oscilloscope; the absorbance at 254 nm (A254) value was obtained from an on-line UV spectrophotometer (Carry50). The concentration of OH radicals was measured by HPLC (high performance liquid chromatography) in the presence of coumarin. The collected data, ORP, DO3, pH, OH radical and A254, are used to explain the ozone reaction mechanisms and also be used to develop a modified Nernst type model for ozonation. Fenton process was used to simulate the indirect free radical reaction in ozonation, therefore, the indirect hydroxyl radical oxidation contribution can be replaced by Fenton process. The ozone direct reaction and OH redicals indirect reaction contributed 37.1% and 62.9%, respectively.
The change of functional groups during ozonation was examined by using 13C NMR (13C nuclear magnetic resonance) and FTIR (Fourier-Transform infrared spectrophotometer) spectra. The functional groups can be found to be destructed by ozonation in this study.
Contents
Chapter 1 Introduciton..............................................................................………………………………………………………………………1
1.1 Introduction………………………………...................................................................………………………………………………………..1
1.2 Objectives...…………………...…………………………………………………….…………….......………………………………………...4
1.3 Task..................................................................................................................................................5
Chapter 2 Literature review………..…..………………………………………………………………………………………………..……6
2.1 Natural organic matters in reservoir water………………………………………………………………………..……………6
2.2 Application of ozone…………………………………………………………………………………………………….…………..…….8
2.2.1 Advanced oxidation processed (AOPs)…………………………………………………….. 8
2.2.2 Two pathways of ozone reaction…………………………………………………………….9
2.2.3 Effect of pH……………………………………………………………………………… 10
2.3 Hydroxyl radicals measurement in ozonation ..…………………………………………………..………….…………... 11
2.4 Application of on-line oscilloscope.…………………………………………………………...……………………………….. 12
2.5 Modeling…………………..……………………………….………………………………………………….…… 14
2.6 Changes of function groups…………………………………………………………………………...……………...…………….. .15
Chapter 3 Materials and methods…………………………………………………………………………………………………….… 17
3.1 Experimental design……………………………………………………………………………………………………………….…….17
3.2 Method and Instrument………………………………………………………………………….………………………………….…. 20
3.2.1 Sampling site……………………………………………………………………………….…………………………………….…20
3.2.2 Extraction procedures………………………………………………………………………………………...…….21
3.2.3 Disinfection by-product Formation Potential Potential (DBPFP) Study……….……………… 25
3.2.4 Ozonation system…………………………………………………………………………………………..……………….….... .25
3.2.5 On-line oscilloscope monitor equipment……………………………………………...……………………………...28
3.3 Analysis Methods………………………………………………………..………………………………………………………………. .29
3.3.1 Basic water quality analysis………………………………………………………………………………………….…… 29
3.3.2 Trihalomethanes (THMs)..………………………………………………………………………...…………......30
3.3.3 Haloacetic acids (HAAs)……………………………………….……………………………………………..……………..34
3.3.4 Adsorbed organic halides (AOX)………………………………………………………………………...……………...40
3.3.5 Absoebance at the wavelength of 254 nm………………………………………………………………………… 42
3.3.6 Dissolved organic carbon (DOC)……………………………………………………..………………………………… 42
3.3.7 OH radical determination………………………………………………………..………………………………..…….…. 44
3.3.8 Fourier Transform Infrared Spectrometer (FTIR)……………………………………...…………..………… .46
3.3.9 Carbon-13 Nuclear Magnetic Resonance (CPMAS 13C NMR)……..………………………...….……. 47
Chapter 4 Results and discussion………...……………………………………………………………………..………...……………. 48
4.1 Water quality of Te-Chi reservoir……………………………………………………..……………………………….……….. . 48
4.2 OH radicals measurement………………………..……………………………………………………...…………..… ..63
4.3 Ozone mechanismds……………………………………………………………………….………………………………....66
4.4 Nernst model………………………………………………………………………………….……………......75
4.5 Functional groups…………..…………………………………………………………………….83
Chapter 5 Conclusions and suggestions……………..………………………………………………………….………………….... 92
5.1 Conclusions……………………………………………………………………...………………………………………………………...…92
5.2 Suggestions………………………………………………………………………………………………………………..……………....… 94
References……………………………………………………………………………………...…………………………………………………...….95
Appendix………………………………………………………………………………………………………………………………………..…….105
Alaton, I. A., Kornmuller, A. and Jekel, M. R., (2002), “Ozonation of spent reactive dye-baths: effect of HCO3-/CO32- alkalinity”, J. Environ. Eng., 128(8): 689–696.
Anotai, J., Lu, M. C. and Chewpreecha P., (2006), “Kinetic of aniline degradation by Fenton and electro-Fenton process”, Wat. Res., 40(9): 1841–1847.
APHA, AWWA and WEF (1998). Standard methods for examination of water and wastewater, 20th Edition. American Public Health Association, Washington D.C., USA.
Arguello, M. D., Chriswell, C. D., Fritz, J. S., Kissinger, L. D., Lee, K. W., Richard, J. J. and Svec, H. J., (1979), “Trihalomethanes in water: A report on the occurrence, seasonal variation in concentrations and precursors of Trihalomethanes”, J. Am. Water Works Assoc., 71(9): 504–508.
Barrow, G. M., (1988), “Physical Chemistry”, McGraw-Hill, NewYork.
Barros, A. L., Pizzolato, T. M., Carissimi, E. and Schneider, I. A. H., (2006), “Decolorizing dye wastewater from the agate industry with Fenton oxidation process”, Minerals Engineering, 19(1): 87–90.
Bekbolet, M., Uyguner, C. S., Selcuk, H., Rizzo, L., Nikolaou, A. D., Meric, S. and Belgiorno, V., (2005), “Application of oxidative removal of NOM to drinking water and formation of disinfection by-products”, Desalination, 176(1-3): 155–166.
Bigda, R.J., (1995), “Consider Fenton’s chemistry for wastewater treatment”, Chemical Engineering Progress, 91(12): 62–66.
Bishop, E., (1972). Indicators. Pergamon Press, Oxford.
Calace, N., Capolei, M., Lucchese, M. and Petronio, B. M., (1999), “The structural composition of humic compounds as indicator of organic carbon sources”, Talanta, 49(2): 277–284.
Chang, C. N., Ma, Y. S., Fang, G. C., Chao, A. C., Tsai, M. C. and Sung, H. F., (2004), “Decolorizing of lignin wastewater using the photochemical UV TiO2 process”, Chemosphere, 56(10): 1011–1017.
Chang, C. N., Ma, Y. S. and Zing, F. F. (2002), “Reducing the formation of disinfection by-products by pre-ozonation”, Chemosphere, 46(1): 21–30.
Chen, D., Weavers, L. K., Walker, H. W. and Lenhart J. J., (2006), “Ultrasonic control of ceramic membrane fouling caused by natural organic matter and silica particles”, Journal of Membrane Science, 276(1-2): 135–144.
Chen, J., Gu, B., LeBoeuf, E. J., Pan, H. and Dai, S., (2002), “Spectroscopic characterization of the structural and functional properties of natural organic matter fractions”, Chemosphere, 48(1): 59–68.
Cheng, F. C., Jen, J. F. and Tsai, T. H., (2002), “Hydroxyl radical in living systems and its separation methods”, Journal of Chromatography B, 781(1-2): 481–496.
Chow, A.T., (2006), “Disinfection by product reactivity of aquatic humic substances derived from soils”, Wat. Res., 40(7): 1426–1430.
Chu, P. M., Guenther, F. R., Rhoderick, G. C. and Lafferty, W.J., (1999), “The NIST Quantitative Infrared Database”, J. Res. Natl. Inst. Stand. Technol., 104(1): 59–81.
Chu, W., Chan, K. H. and Kwan, C. Y., (2004), “Modeling the ozonation of herbicide 2,4-D through a kinetic approach”, Chemosphere, 55(5): 647–652.
Chu, W. and Ching, M. H., (2003), “Modeling the ozonation of 2,4-dichlorophoxyacetic acid through a kinetic approach”, Wat. Res., 37(1): 39–46.
Chien, Y. C., Wang, H. P., Lin, K. S., Huang, Y. J. and Yang, Y. W., (2000), “Fate of bromine in pyrolysis of printed circuit board wastes”, Chemosphere, 40(4): 383–387.
Contreras, S., Rodríguez, M., Al Momani, F., Sans, C. and Esplugas, S., (2003), “Contribution of the ozonation pre-treatment to the biodegradability of aqueous solution of 2,4-dichlorophenol. Wat. Res., 37(13): 3164–3171.
Davis, W. M., Erickson, C. L., Johnston, C. T., Delfino, J. J. and Porter, J. E., (1999), “Quantitative Fourier transform infrared spectroscopic investigation of humic substance functional group composition”, Chemosphere 38(12): 2913–2928.
Dilling, J. and Kaiser, K., (2002), “Estimation of the hydrophobic fraction of dissolved organic matter in water sample using UV photometry”, Wat. Res., 36(20): 5037–5044.
Fenton, H. J. H., (1894), “Oxidation of tartaric acid in presence of iron”, Journal of Chemical Society, 65: 899–910.
Gamal El-Din, M., Smith, D. W., Al Momani, F. and Wang, W., (2006), “Oxidation of resin and fatty acids by ozone Kinetics and toxicity study”, Wat. Res., 40(2): 392–400.
Gao, Y., Yang, M., Hu J., Zhang Y., (2004), “Fenton’s process for simultaneous removal of TOC and Fe2+ from acidic waste liquor”, Desalination, 160(2): 123–130.
Goel, S., Hozalski, R. M. and Bouwer, E. J., (1995), “Biodegradation of NOM: effect of NOM source and ozone dose”, J. Am. Water Works Assoc., 87(1): 90–105.
González-Vila, F. J., Lankes, U. and Lüdemann, H. D., (2001), “Comparison of the information gained by pyrolytic techniques and NMR spectroscopy on the structural features of aquatic humic substances”, Journal of Analytical and Applied Pyrolysis, 58–59: 349–359.
Guay, C., Rodriguez, M. and Sérodes, J., (2005), “Using ozonation and chloramination to reduce the formation of trihalomethanes and haloacetic acids in drinking water”, Desalination, 176(1-3): 229–240.
Hautala, K., Peuravuori, J.and Pihlaja, K., (2000), “Measurement of aquatic humus content by spectroscopic analyses”, Wat. Res., 34(1): 246–258.
Hancock, J. T., Desikan, R., Neill, S. J. and Cross, A. R., (2004), “New equations for redox and nano-signal transduction”, Journal of Theoretical Biology, 226(1): 65–68.
Hafidi, M., Amir, S. and Reve, J. C., (2005), “Structural characterization of olive mill waster-water after aerobic digestion using element”, Process Biochemistry, 40(8): 2615–2622.
Ho, L., Gayle, N. and Croue, J. P., (2002), “Influence of the character of NOM on the ozonation MIB and geosmin”, Wat. Res., 36(3): 511–518.
Hoigné, J. and Bader, H., (1976), “The role of hydroxyl radical reactions in ozonation processes in aqueous solutions”, Wat. Res., 10(5): 377–386.
Hoigné, J. and Bader, H., (1983), “Rate constants of reactions of ozone with organic and inorganic compounds in water–Ⅱ. Dissociatin organic compounds”, Wat. Res., 17(2): 185–194.
Jones, B. D. and Ingle Jr., J. D., (2005), “Evaluation of redox indicators for determining sulfate-reducing and dechlorinating conditions”, Wat. Res., 39(18): 4343–4354.
Jeong J. and Yoon J., (2005), “pH effect on OH radical production in
photo/ferrioxalate system”, Wat. Res., 39(13): 2893–2900.
Kim, H. C. and Yu, M. J., (2005), “Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control”, Wat. Res., 39(19): 4779–4789.
Kitis, M., Karanfil, T., Wigton, A. and Kilduff, J. E., (2002), “Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resins adsorption and ultrafiltration fractionation”, Wat. Res., 36(15): 3834–3848.
Kasprzyk-Hordern B., Dąbrowska A., Świetlik J. and Nawrocki J., (2004), “The application of the perfluorinated bonded alumina phase for natural organic matter catalytic ozonation”, J. Environ. Eng. Sci. 3(1): 41–50.
Ko, Y. W., Braun, G. A. and Frimmel, F. H., (2000), “Effect of Preozonation on the Formation of Chlorinated Disinfection By-products for River Ruhr”, Acta hydrochim. hydrobiol., 28(5): 256–261.
Koshino, H., Satoh, H., Yamada, T. and Esumi, Y., (2006), “Structural revision of peribysins C and D”, Tetrahedron Letters, 47(27): 4623–4626.
Kuo, J. T., Lung, W. S., Yang, C. P., Liu, W. C., Yang, M. D. and Tang, T. S., (2006), “Eutrophication modelling of reservoirs in Taiwan”, Environmental Modelling & Software, 21(6): 829–844.
Landgraf, S., (2001), “Application of semiconductor light sources for investigations of photochemical reactions”, Spectrochim. Acta Part A, 57(10): 2029–2048.
Leenheer, J. A., (1981), “Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters”, Environ. Sci. Technol., 15(5): 578–587.
Leenheer, J. A., Nanny, M. A. and Mclntyre, C., (2003a), “Terpenoids as major precursors of dissolved organic matter in landfill leachates, surface water, and groundwater”, Environ. Sci. Technol., 37(11): 2323–2331.
Leenheer, J. A., Wershaw, R. L., Brown, G. K. and Reddy, M. M., (2003b), “Characterization and diagnosis of strong-acid carboxyl groups in humic substances”, Applied Geochem., 18(3): 471–482.
Liao, C. H., Kang, S. F. and Jung, H. P., (1999), “Simultaneous removal of COD and color from due manufacturing process wastewater using photo-Fenton oxidation process”, Journal of Environmental Science and Health, A34(4): 989–1012.
Liao, L. B., Chen, W. M. and Xiao, X. M., (2006), “The generation and inactivation mechanism of oxidation–reduction potential of electrolyzed oxidizing water”, Journal of Food Engineering. To be publish.
Louit, G., Foley, S., Cabillic, J., Coffigny, H., Taran, F., Valleix, A., Renault, J. P. and Pin, S., (2005), “The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography”, Radiation Physics and Chemistry, 72(2–3): 119–124.
Ma, C. W. and Chu, W., (2001), “Photodegradation mechanism and rate improvement of chlorinated aromatic dye in non-ionic surfactant solutions”, Wat. Res., 35(10): 2453–2459.
Marhaba T. F. and Van, D., (2000), “The variation of mass and disinfection by-product formation potential of dissolved organic matter fraction along a conventional surface water treatment plant”, J. Hazard Mater., A74(3): 133–147.
Maurice, P. A., Pullin, M. J., Cabaniss, S. E., Zhou, Q., Namjesnik-Dejanovic, K. and Aiken, G. R., (2002), “A comparison of surface water natural organic matter in raw filtered water samples, XAD, and reverse osmosis isolates”, Wat. Res., 36(9): 2357–2371.
Mecozzi, M. and Pietrantonio, E., (2006), “Carbohydrates proteins and lipids in fulvic and humic acids of sediments and its relationships with mucilaginous aggregates in the Italian seas”, Marine Chemistry, 101(1-2): 27–39.
Meunier, L., Canonica, S. and Von Gunten, U., (2006), “Implications of sequential use of UV and ozone for drinking water quality”, Wat. Res., 40(9): 1864–1876.
Monteagudo, J. M., Carmona, M. and Durán, A., (2005), “Photo-Fenton-assisted ozonation of p-Coumaric acid in aqueous solution”, Chemosphere, 60(8): 1103–1110.
Newcombe, G., Drikas, M., Assemf, S. and Beckett, R., (1997), “Influence of characterised natural organic material on activated carbon adsorption I. Characterisation of concentrated reservoir water”, Wat. Res., 31(5): 965–972.
Norwood, D. L., Christman, R. F. and Hatcher, P. G., (1987), “Structural characterization of aquatic humic material. 2. Phenolic content and its relationship to chlorination mechanism in an isolated aquatic fulvic acid”, Environ. Sci. Technol. 21(8): 791–798.
Gerald, L. G. and Jamie, R. M., (2006), “Fluorescence detection of hydroxyl radicals”, Radiation Physics and Chemistry, 75(4): 473–478.
Nicoli, M. C., Toniolo, R. and Anese, M., (2004), “Relationship between redox potential and chain-breaking activity of model systems and foods”, Food Chemistry, 88(1): 79–83.
Panyapinyopol, B., Marhaba, T. F., Kanokkantapong, V. and Pavasant, P., (2005), “Characterization of precursors to trihalomethanes formation in Bangkok source water”, Journal of Hazardous Materials, B120(1-3): 229–236.
Peña, M., Coca, M., Gonzalez, G., Rioja, R. and Garcia, M. T., (2003), “Chemical oxidation of wastewater from molasses fermentation with ozone”, Chemosphere, 51(9): 893–900.
Pi, Y., Schumacher, J. and Jekel, M., (2005), “Decomposition of aqueous ozone in the presence of aromatic organic solutes”, Wat. Res., 39(1): 83–88.
Pomes, M. L., Larive, C. K., Thurman, E. M., Green, W. R., Orem, W. H., Rostad, C. E., Coplen, T. B., Cutak, B. J. and Dixon, A. M., (2000), “Sources and haloacetic acid/trihalomethane formation potentials of aquatic humic substances in the Wakarusa river and Clinton Lake near Lawrence, Kansas”, Environ. Sci. Technol., 34(20): 4278–4286.
Prado, J., Arantegui, J., Chamarro, E. and Esplugas, S., (1994), “Degradation of 2, 4–D by ozone and light”, Ozone Sci. & Eng., 16(3): 235–245.
Quintáns, C., Moure, M. J. and Valdés, M. D., (2006), “A new attenuation circuit for voltage signal conditioning in electronic measurement instrumentation”, Measurement, 39(5): 393–406.
Qu, J., Li H., Liu, H. and He, H., (2004), “Ozonation of alachlor catalyzed by Cu-Al2O3 in water”, Catalysis Today, 90(3-4): 291–296.
Saito, H. and Hyodo, T., (2003), “Improvement in the gamma-ray timing measurements using a fast digital oscilloscope”, Radiation Phy. Chem., 68(3–4): 431–434.
Sarma, L., Devasagayam, T. P., Mohan, H., Mittal, J. P. and Kesavan, P. C., (1996), “Mechanisms of protection by buthionine sulphoximine against γ-ray-induced micronuclei in polychromatic erythrovcytes of mouse bone marrow”, Int. J. Radiat. Biol., 69(5): 633–643.
Sánchez-Polo, M., Von Gunten, U. and Rivera-Utrilla, J., (2005), “Efficiency of activated carbon to transform ozone into ∙OH radicals: Influence of operational parameters”, Wat. Res., 39(14): 3189–3198.
Satoh, H., Koshino, H., Uno, T., Koichi, S., Iwata, S. and Nakata, T., (2005), “Effective consideration of ring structures in CAST CNMR for highly accurate 13C NMR chemical shift prediction”, Tetrahedron, 61(31): 7431–7437.
Sirivedhin, T. and Gray, K.A., (2005), “2. Comparison of the disinfection by-product formation potentials between a wastewater effluent and surface waters”, Wat. Res., 39(6): 1025–1036.
Staehelin, J. and Hoigné, J., (1982), “Decomposition of ozone in water-rate of initiation by hydroxide ions and hydrogen peroxide”, Environ. Sci. Technol., 16(10): 676–681.
Staehelin, J. and Hoigné, J., (1985), “Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions”, Environ. Sci. Technol., 19(12): 1206–1213.
Tezcanli-Güuyer, G. and Ince, N. H., (2004), “Individual and combined effects of ultrasound, ozone and UV irradiation a case study with textile dyes”, Ultrasonics, 42(1-9): 603–609.
Thurman, E. M. and Malcolm, R. L., (1981), “Preparative isolation of aquatic humic substances”, Environ. Sci. Technol., 15(4): 463–466.
Thomsen, M., Pia, L., Dobel, S., Hansen, P. E., Carlsen, L. and Mogensen, B. B., (2002), “Characterization of humic materials of different origin: a multivariate approach for quantifying the latent properties of dissolved organic matter”, Chemosphere, 49 (10): 1327–1337.
Utsumi, H., Han, Y. H. and Ichikawa, K., (2003), “A kinetic study of 3-chlorophenol enhanced hydroxyl radical generation during ozonation”, Wat. Res., 37(20): 4924–4928.
Von Gunten, U., (2003a), “Ozonation of drinking water: Part I. Oxidation kinetics and product formation”, Wat. Res., 37(7): 1443–1467.
Von Gunten, U., (2003b), “Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine”, Wat. Res., 37(7): 1469–1487.
Wang, X., Huang, X., Zuo, C. and Hu, H., (2004), “Kinetics of quinoline degradation by O3/UV in aqueous phase”, Chemosphere, 55(5): 733–741.
Weber, W. J., (1972), “Physicochemical Processes for Water Quality Control”, John Wiley & Sons, New York.
White, M. C., Thompson, J. D., Harrington, G. W. and Singer, P. C., (1997), “Evaluating Criteria for Enhanced Coagulation Compliance”, J. Am. Water Works Assoc., 89(5): 64–77.
White, D. M., Garland, D., Jasprit, S. N. and Woolard, C. R., (2003), “Natural organic matter and DBP formation potential in Alaskan water supplies”, Wat. Res., 37(4): 939–947.
Wojnárovits, L., Pálfi, T., Takács, E. and Emmi, S. S., (2005), “Reactivity differences of hydroxyl radicals and hydrated electrons in destructing azo dyes”, Radiation Physics and Chemistry, 74(3-4): 239–246.
Yeh, H. H. and Huang, W. J., (1993), “The Fate of Dissolved Organics in Water Purification Processes Treating Polluted Raw Water”, Water Sci. Technol., 27(11): 71–80.
辛汎峰, (1999), “以臭氧及膜濾法降低優氧化水體中有機成分生成消毒副產物潛能之探討”, 東海大學環境科學系碩士班碩士論文.
吳家興, (2000), “台灣地區水庫水源特性及消毒副產物生成潛能之探討”, 東海大學環境科學系碩士班碩士論文.
陳峙霖, (2001), “以預臭氧對腐植酸生成消毒副產物特性之探討”, 東海大學環境科學系碩士班碩士論文.
蔡美純, (2002), “從水中天然有機物官能基變化探討前臭氧/粒狀活性碳反應機制”, 東海大學環境科學系碩士班碩士論文.
宋曉帆, (2003), “利用高級處理程序及高速擷取設備輔助監測水體中天然有機物官能基特性變化及降低消毒副產物生成潛能探討”, 東海大學環境科學系碩士班碩士論文.
梁永瑩, (2004), “Applying Oscilloscope to Investigate the Direct and Indirect Ozone Reactions”, 東海大學環境科學系碩士班碩士論文.
江彥霈, (2005), “The Investigation of Two-stage Ozone Reaction in Eutrophication Reservoir Water”, 東海大學環境科學系碩士班碩士論文.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top