跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 11:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游聖弘
研究生(外文):Sheng-Hong Yu
論文名稱:彈性製造系統控制單元仿真器之設計
論文名稱(外文):Emulator Design for Flexible Manufacturing System
指導教授:陳凱瀛陳凱瀛引用關係
口試委員:董金偉陳穆臻
口試日期:2006-06-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:115
中文關鍵詞:製造執行系統彈性製造系統仿真器模擬器派工法則
外文關鍵詞:Manufacturing Execution System (MES)Flexible Manufacturing System (FMS)EmulatorSimulatorDispatching Rule
相關次數:
  • 被引用被引用:13
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技時代的進步,產品生命週期(Product Life Cycle)和上市時間逐漸縮短,消費者的需求也趨向少量多樣的需求形態,彈性製造系統(Flexible Manufacturing System, FMS)的機器彈性、組合彈性、生產彈性、途程彈性…等,運用高自動化的群組技術(Group Technology)可以達成生產線快速換線,滿足少量多樣的產品需求。製造執行系統(Manufacturing Execution System, MES)上層銜接先進生產排程系統(Advanced Planning and Scheduling, APS)的生產排程規劃結果,以進行即時性的現場生產派工;下層連接的是製造控制系統(Manufacturing Control System, MCS),控制彈性製造系統的機台設備,並收集現場生產資訊回饋給製造執行系統,以提供先進生產排程系統做為未來排程的依據。
生產系統的模擬(Simulation)運用先到先服務(First Come First Serve, FCFS)、最短加工時間(Shortest Processing Time, SPT)、最早訂單交期(Earliest Due Date, EDD)…等派工法則,透過實驗性的方法,建立虛擬的生產製造系統並在電腦上快速執行,來分析實際製造現場的行為。而仿真(Emulation)結合了模擬模型和控制系統,除了利用模擬方法發現系統瓶頸(Bottleneck)與死鎖(Deadlock)狀態及最佳的派工法則(Dispatching Rule)之外,系統還可以進行即時測試,提高生產的速度及穩定性,所以仿真器(Emulator)的發展可以縮短彈性製造系統的建構時間並減少建構成本。本研究在仿真器設計時引入模組化設計(Modular Design)概念,建構彈性製造系統機台設備模組模式,以模擬系統內各類型機台或設備的運作,如電腦數值控制(Computer Numerical Control, CNC)加工機模組、軌道式搬運車(Rail Guided Vehicle, RGV)、SCARA機器手臂模組…等,仿真系統建構完成之後,亦能整合成為未來生產現場(Shop-floor)的線上即時監控系統。
Since the consumers’ demand of products has become bitty and diverse, the product life cycle and the period of product come into the market has also reduced. The flexibility (i.e., machine flexibility, mix flexibility, production flexibility, routing flexibility, etc.) of flexible manufacturing system (FMS) applied the group technology (GT) in fulfilling the manufacturing type and the consumers’ demand. Manufacturing execution system (MES) connecting with the advanced planning and scheduling (APS) system managed the shop-floor dispatching activity, and manufacturing control system (MCS) linked MES and catched the feedback data from devices.
Simulation which consists of several different model types (i.e., static model, dynamic model, deterministic model, stochastic model, discrete model and continuous model) is an experimental approach. It is usually performed on a computer and is analyzed for the behavior of manufacturing system to find the best implementing strategies. Emulation which combines the simulation model and the control system observes the executing status and discovers the bottleneck and deadlock phenomenons. It also reduced the FMS controller developing time and saved the developing cost.
This thesis proposed a modular design concept on developing the FMS emulator to emulate the machine (i.e., computer numerical control (CNC) machine, rail guided vehicle (RGV), SCARA robot, etc.). Four dispatching rules: first come first serve (FCFS), shortest imminent processing time (SIPT) and earliest due date (EDD) can be selected to observe different performance of three cases. In the future, the emulator could also be integrated with the shop-floor on-line monitoring system of a manufacturing system.
目 錄
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構與流程 3
第二章 文獻探討 5
2.1 彈性製造系統介紹 5
2.1.1 彈性製造單元 5
2.1.2 彈性製造系統 9
2.1.3 彈性製造系統的組成 15
2.2 集束型設備介紹 17
2.3 模擬與仿真 19
2.3.1 模擬介紹 19
2.3.2 仿真介紹 25
2.3.3 模擬器與仿真器的比較 27
第三章 系統模式建構 30
3.1 各設備模組運作模式之建構 30
3.1.1 型一CNC加工機運作模式 31
3.1.2 型三CNC加工機運作模式 32
3.1.3 Chamber運作模式 34
3.1.4 裝卸站運作模式 35
3.1.5 清洗機運作模式 36
3.1.6 軌道搬運車運作模式 38
3.1.7 SCARA機器手臂運作模式 40
3.1.8 機台設備維修保養運作模式 42
3.2 Cluster Tools之建構 44
3.2.1 Cluster Tools系統架構 44
3.2.2 Cluster Tools之派工法則 45
3.3 FMS(Flexible Manufacturing System)之建構 48
3.3.1 FMS系統架構 48
3.3.2 FMS之派工法則 48
3.4 FTL(Flexible Transfer Line)之建構 53
3.4.1 FTL系統架構 53
3.4.2 FTL之派工法則 53
第四章 系統案例仿真器之設計 58
4.1 資料庫結構設計 58
4.2 各模組之設計 63
4.2.1 Control模組(Control.bas) 64
4.2.2 CNC模組(CNC.bas) 69
4.2.3 Chamber模組(Chamber.bas) 72
4.2.4 裝卸站模組(ST.bas) 75
4.2.5 清洗機模組(WM.bas) 77
4.2.6 軌道搬運車模組(RGV.bas) 80
4.2.7 SCARA機器手臂模組(SCARA.bas) 83
4.2.8 派工模組(Dispatch.bas) 86
4.2.9 Performance模組(Performance.bas) 88
4.3 系統介面說明 90
第五章 系統案例模擬與仿真實驗 97
5.1 實驗環境描述 97
5.2 Cluster Tools案例之實驗 99
5.2.1 Cluster Tools模擬實驗之假設 99
5.2.2 Cluster Tools模擬實驗結果分析 99
5.2.3 Cluster Tools模擬與仿真實驗比較 101
5.3 FMS案例之實驗 102
5.3.1 FMS模擬實驗之假設 102
5.3.2 FMS模擬實驗結果分析 102
5.3.3 FMS模擬與仿真實驗比較 104
5.4 FTL案例之實驗 105
5.4.1 FTL模擬實驗之假設 105
5.4.2 FTL模擬實驗結果分析 106
5.4.3 FTL模擬與仿真實驗比較 107
第六章 結論與建議 109
參考文獻 111
參考文獻
[1]Mikell P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, Second Edition, U.S.A., Prentice-Hall, Inc., 2001, pp.460-513.
[2]Seungjoo Lee, Dawn M. Tilbury, “A modular control design method for a flexible manufacturing cell including error handling”, IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, 2005, pp.8355-8360.
[3]Hamid R. Golmakani, James K. Mills, Beno Benhabib, “Deadlock-free Optimal Routing in Flexible Manufacturing Cells via Supervisory Control Theory”, IEEE Conference on Systems, Man and Cybernetics, Washington D.C., 2003, pp.3390-3395.
[4]H. Najjari, S. J. Steiner, “Integrated and intelligent control system for a flexible manufacturing cell”, Proceedings of the IEEE International Symposium on Industrial Electronics, Guimaraes, 1997, pp.165-170.
[5]Z. Weiss, R. Konieczny, “Software structure for a robot operated flexible manufacturing cell”, Proceedings of the Third International Workshop on Robot Motion and Control, Bukowy Dworek, 2002, pp.269-274.
[6]Volz R. A., Mudge T. N., Naylor A. W., Brosgol B., “Ada in a Manufacturing Environment”, Proceedings of the 5th Annual Control Engineering Conference, Rosemont, IL, 1986, pp.433-440.
[7]Felix T.S. Chan, Rahul Swarnkar, “Ant colony optimization approach to a fuzzy goal programming model for a machine tool selection and operation allocation problem in an FMS”, Robotics and Computer-Integrated Manufacturing, vol.22, no.4, 2006, pp.353–362.
[8]N. Nagarjuna, O. Mahesh, K. Rajagopal, “A heuristic based on multi-stage programming approach for machine-loading problem in a flexible manufacturing system”, Robotics and Computer-Integrated Manufacturing, vol.22, no.4, 2006 pp.342–352.
[9]Viswanadham N, Narahari Y., Performance modeling of automated manufacturing systems, India: Prentice-Hall; 1992.
[10]Felix T.S. Chan, Rajat Bhagwat, S. Wadhwa, “Flexibility performance: Taguchi’s method study of physical system and operating control parameters of FMS”, Robotics and Computer-Integrated Manufacturing, In press, Corrected Proof, 2006.
[11]Jim Lee and Roonraj Maneesavet, “Dispatching rail-guided vehicles and scheduling jobs in a Flexible manufacturing system”, International Journal of Production Research, vol.37, no.1, 1999, pp.111-123.
[12]M.G. Abou-Ali and M.A. Shouman, “Effect of dynamic and static dispatching strategies on dynamically planned and unplanned FMS”, Journal of Materials Processing Technology, vol.148, no.1, 2004, pp.132–138.
[13]Arun S. Kashyap, Suresh K. Khator, “Analysis of tool sharing in an FMS: A simulation study”, Computers Industrial. Engineering, vol.30, no.1, 1996, pp.137-145.
[14]Felix T.S. Chan, H.K. Chan, “Analysis of dynamic control strategies of an FMS under different scenarios”, Robotics and Computer-Integrated Manufacturing, vol.20, no.5, 2004, pp.423–437.
[15]Jongchul Song, Carl T. Haas, Carlos Caldas, Esin Ergen, Burcu Akinci, “Automating the task of tracking the delivery and receipt of fabricated pipe spools in industrial projects”, Automation in Construction, vol.15, no.2, 2006, pp.166-177.
[16]Averill M. Law, W. David Kelton, Simulation Modeling And Analysis, Second Edition, Singapore, McGraw-Hill, 1991, pp.1-132.
[17]A. Alan B. Pritsker, Introduction to Simulation and SLAMII, Third Edition, , Taipei, Taiwan, System Publishing Corporation, 1986, pp.1-15.
[18]Hamdy A. Taha, Simulation Modeling and SIMNET, U.S.A., Prentice Hall International, Inc., 1988, pp.3-12.
[19]Fred E. Meyers, Matthew P. Stephens, Manufacturing Facilities Design and Material Handling, Second Edition, U.S.A., Prentice Hall International, Inc., 2000, pp.374-388.
[20]Sabuncuoglu, “A study of scheduling rules of Flexible manufacturing systems: a simulation approach”, International Journal of Production Research, vol. 36, no. 2, pp.527-546, 1998.
[21]Ian McGregor, “The relationship between simulation and emulation”, Proceedings of the 2002 Winter Simulation Conference, San Diego, California, 2002, p.p.1683-1668.
[22]H. J. Kim, M. Ciupek, A. Buchholz, G. Seliger, “Adaptive disassembly sequence control by using product and system information”, Robotics and Computer-Integrated Manufacturing, vol.22, no.3, 2006, pp.267–278.
[23]Michael Pinedo, Scheduling Theory, Algorithms, and Systems, Second Edition, U.S.A., Prentice Hall International, Inc., 2002, pp.209-332.
[24]S. T. Newman, R. Bell, “The Modeling of Multi-Cell Flexible Machining Facilities”, Proceedings of the 3rd International Conference on Factory 2000 - Advanced Factory Automation, Institution of Electrical Engineers, University of York, UK, 1992, pp.285-290.
[25]K.F. Chiu, L.K. Chu, “An Object-Oriented Approach to the Design and Operation of Flexible Manufacturing Systems”, Annual Issue of IIE (HK), vol. 1995-96, 1995, pp.24-30.
[26]Kai-Ying Chen, “Modular Design Method for the Control Software Development of the. Cell Controller in Automated Manufacturing Systems”, IEEE International Conference on Networking, Sensing and Control, Arizona, U.S.A., 2005, pp.665-670.
[27]R. S. Srinivasan, “Modeling and Performance Analysis of Cluster Tools Using Petri Nets”, IEEE Transactions on Semiconductor Manufacturing, vol.11, no.3, 1998, pp.394-403.
[28]Shadi Rostami, Babak Hamidzadeh, “An Optimal Residency-Aware Scheduling Technique for Cluster Tools with Buffer Module”, IEEE Transactions on Semiconductor Manufacturing, vol.17, no.1, 2004, pp.68-73.
[29]J. R. Hauser, S. A. Rizvi, “Cluster tool technology”, SPIE Process Module Metrology, Control, and Clustering, vol.1594, 1991, pp.45-54.
[30]Wlodek M. Zuberek, “Cluster Tools With Chamber Revisiting-Modeling and Analysis Using Timed Petri Nets”, IEEE Transactions on Semiconductor Manufacturing, vol.17, no.3, 2004, pp.333-344.
[31]J. W. Herrmann, N. Chandrasekaran, B. F. Conaghan, M-Q Nguyen, G. W. Rublof, R. Z. Shi, “Evaluating the Impact of Process Changes on Cluster Tool Performance”, IEEE Transactions on Semiconductor Manufacturing, vol.13, no.2, 2000, pp.181-192.
[32]Ja-Hee Kim, Tae-Eog Lee, Hwan-Yong Lee, Doo-Byeong Park, “Scheduling Analysis of Time-Constrained Dual-Armed Cluster Tools”, IEEE Transactions on Semiconductor Manufacturing, vol.16, no.3, 2003, pp.521-534.
[33]Hwan-Yong Lee, Tae-Eog Lee, “Scheduling Single-Armed Cluster Tools With Reentrant Wafer Flows”, IEEE Transactions on Semiconductor Manufacturing, vol.19, no.2, 2006, pp.226-240.
[34]Shadi Rostami, Babak Hamidzadeh, Dan Camporese, “An Optimal Periodic Scheduler for Dual-Arm Robots in Cluster Tools with Residency Constraints”, IEEE Transactions on Robotics and Automation, vol.17, no.5, 2001, pp.609-618.
[35]林怡仁,以彩色裴氏網為主之模組化單元控制器之設計,碩士論文,國立台北科技大學工業工程與管理系碩士班,台北,2005。
[36]何信瑩,使用演化式演算法最佳化彈性製造系統之生產規劃,碩士論文,逢甲大學資訊工程學系碩士班,台中,2004。
[37]Rezaa. Maleki,譯者:高進鎰、葛自祥,彈性製造系統,台北:高立圖書有限公司,2000,第1-35頁,第121頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊