跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭家成
研究生(外文):Chia-Cheng Kuo
論文名稱:薄膜電晶體液晶顯示器Mura瑕疵檢測技術之研發
論文名稱(外文):Development of Automatic TFT-LCD Mura Defect Detection
指導教授:陳亮嘉
口試委員:葉勝利林世穆范光照
口試日期:2006-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:100
中文關鍵詞:薄膜電晶體液晶顯示器平面顯示器Mura瑕疵離散餘弦轉換自動化光學檢測
外文關鍵詞:FPDTFT-LCDsDefect inspectionMacro defectsMura defectsDiscrete Cosine Transform (DCT)
相關次數:
  • 被引用被引用:9
  • 點閱點閱:781
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:3
薄膜電晶體液晶顯示器 ( TFT-LCD ) ,近幾年逐漸成為平面顯示器(FPD)產業發展的主流。薄膜電晶體液晶顯示器製造過程中經常因為粉塵或液晶分佈不均勻因而產生Mura瑕疵。Mura瑕疵常具有低對比和非均一性的特質,大部分製造商仍然以人工目檢的方式來檢測薄膜電晶體液晶顯示器的品質,人工目檢的檢測方式成本高,而且無法達到固定之量測品質標準;因此本文基於背景重建的概念,提出一新穎的薄膜電晶體液晶顯示器瑕疵檢測演算法,以達到自動化瑕疵(Mura)檢測的目的。由於液晶顯示器面板上存在著非均一性的亮度變化,且瑕疵與背景間的亮度差異很小,因此造成Mura瑕疵檢測上的困難。利用離散餘弦轉換(DCT),從離散餘弦係數之反轉換,能有效地淬取出背景資訊,重新建構出不具瑕疵之原始背景影像,解決薄膜電晶體液晶顯示器影像非均一性之檢測問題。由原始瑕疵影像與不含瑕疵的背景影像之相異性,透過適當的閥值選取,可將瑕疵從影像中分割出來。本文提出之Mura瑕疵檢測演算法,已針對多個天然Mura瑕疵影像進行測試,實驗結果證實此演算法對於真實的Mura瑕疵影像,可精確且快速地檢出瑕疵;在平面顯示器(FPD)的線上檢測工程上,將具有實質應用潛力。
An innovative TFT-LCD defect detection algorithm is developed for automatic detection of Mura defects based on Discrete Cosine Transform (DCT) principle for background image reconstruction. Efficient and accurate surface defect detection on FPD panels has never been so important in achieving the high yield rate of FPD manufacturing. All kinds of FPD manufacturers need to inspect products such as screen panels, control PCBs and final assembly modules. Front-of-screen (FOS) quality performed by a human visual inspection is susceptible to unacceptable manufacturing costs and uncertain product delivery time. Therefore, automatic inspection of FOS quality is highly essential to achieve effective defect detection for optimizing operation efficiency and product quality.
One of the visually most difficult recognizing problems in LCD panel inspection is to deal with clearly distinguishing specific regions of low contrast and non-uniform brightness called mura. A mura defect in general processes a non-uniform brightness region that slightly differs from the background by down to unit signal level, where it is detectable only when its size is larger than a specific size. Detecting blob-Mura defects in a LCD panel can be difficult due to non-uniform brightness background and slightly different brightness levels between the defect region and the background. To resolve this issue, a DCT-based background reconstruction algorithm is developed to establish the background image without mixing with the detected object- Mura defects. Based on DCT principle, we present a new segmentation method for detecting area-mura. Through some experimental tests on natural Mura defects, it was verified that the proposed algorithm has a superior capability for detecting blob-mura defects in its detection accuracy and speed.
目錄

中文摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究範圍與目的 2
1.3 研究方法簡介 5
1.4 論文架構 6
第二章 文獻回顧 7
2.1 薄膜電晶體液晶顯示器簡介 7
2.1.1 薄膜電晶體液晶顯示器原理與構造 8
2.1.2 薄膜電晶體液晶顯示器製造流程 11
2.2 液晶顯示器瑕疵檢測 13
2.3 頻譜分析之瑕疵檢測技術 20
2.3.1 空間域影像分析 21
2.3.2 頻率域影像分析 22
2.4 離散餘弦轉換之應用 25
2.5 瑕疵量化評估之探討 26
2.6 文獻探討結論 29
第三章 數位影像處理技術 30
3.1 影像二值化 30
3.2 影像濾波 32
3.3 影像型態學 35
3.4 以區域為基礎之影像分割 38
第四章 研究方法 40
4.1 研究方法流程概述 40
4.2 離散餘弦轉換技術 44
4.2.1 一維離散餘弦轉換 45
4.2.2 二維離散餘弦轉換 47
4.2.3 二維離散餘弦轉換應用於瑕疵檢測 51
4.3 濾波器設計與最佳化 51
4.3.1 濾波器實驗 53
4.3.2 濾波器設計 58
4.4 瑕疵分割 66
4.4.1 影像二值化 66
4.4.2 影像分割 68
4.5 瑕疵量化與誤判消除 69
第五章 實驗結果與分析 73
5.1 量測系統架構之設計 73
5.1.1 影像之前處理程序 74
5.2 瑕疵量化分析 77
5.3 薄膜電晶體液晶顯示器瑕疵檢測結果 79
5.4 系統效能評估 86
第六章 結論與未來展望 94
6.1 結論 94
6.2 未來發展 95
參考文獻 96
[1] Tsunashimahigashi , Kouhoku , Yokohama , “ Hybrid Inspection System for LCD Color Filter Panels” , K.NAKASHIMA / General Manager of Engineering Division Lasertec Corporarion , JAPAN , 2003.
[2] 紀國鐘、鄭晃忠,液晶顯示器技術手冊,台灣電子材料與元件協會。
[3] Y. Mori, K. Tanahashi,& S. Tsuji “Quantitative evaluation of ''mura'' in liquid crystal displays”Opt. Eng.43(11),2004,pp.2696-2700.
[4] 王淑珍,台灣邁向液晶王國之秘,中國生產力中心,2003。
[5] 堀 浩雄、鈴木幸治,”彩色液晶顯示”,科學出版社。
[6] J. Y. Lee and S. I. Yoo , “Automatic Detection of Region-Mura Defect in TFT-LCD”, IEICE TRANS. INF.&SYST., VOL.E87-D(10), 2004, pp.2371-2378.
[7] K. N. Choi, J. Y. Lee, and S. I. Yoo, “Area-Mura Detection in TFT-LCD Panel”,The Interational Society for Optical Engineering 5300, 2004, pp.151-158.
[8] 陳志忠,液晶顯示器的像素點缺陷與相對亮度均一性之自動化檢測,碩士論文,私立中原大學機械工程研究所, 2001。
[9] J. H. Oh, D. M. Kwak, K. B. Lee, Y. C. Song, D. H. Choi, and K. H. Park,“Line Defece Detection in Tft-Lcd Using Directional Filter Bank and Adaptive Multilevel Thresholding”, Key Engineering Materials Vols. 270-273 , 2004, pp. 233-238.
[10] C. J. Lu and D. M. Tsai, “Automatic defect inspection for LCDs using singular value decomposition”, Int J Adv Manuf Technol , 2005, pp.53–61.
[11] 蔡篤銘、林品杰、曾彥馨,「應用獨立成份分析濾波器於背光板與TFT-LCD面板之瑕疵檢測」,AOI Forum & SHOW 2005,交通大學,94年10月20日。
[12] Aapo Hyvärinen and Erkki Oja, “ Independent Component Analysis: Algorithms and Applications”, Neural Networks Research Centre Helsinki University of Technology P.O. Box 5400, FIN-02015 HUT, Finland Neural Networks, 2000, 13(4-5):pp.411-430.
[13] Y. C. Song, D. H. Choi and K. H. Park, “ Multiscale Detection of Defect in Thin Film Transistor Liquid Crystal Display Panel”, Japanese Journal of Applied Physics Vol. 43, No. 8A, 2004, pp. 5465–5468.
[14] Y. C. Song, D. H. Choi, and K. H .Park, “Morphological Blob-Mura Defect DetectionMethod for TFT-LCD Panel Inspection”, M.Gh. Negoita et al. (Eds.): KES 2004, LNAI 3215, 2004, pp.862–868.
[15] W. S. Kim, D. M. Kawak, Y. C. Song, D. H. Choi and K. H. Park ,” Detection of Spot-Type Defects on Liquid Crystal Display Modules”, Key Engineering Materials Vols. 270-273 , 2004, pp. 808-813.
[16] 洪崇祐,應用一維傅立葉分析於TFT-LCD液晶顯示面板之瑕疵檢測,碩士論文,元智大學工業工程與管理研究所,2004。
[17] Tsunashimahigashi, Kouhoku-ku, Yokohama,” Hybrid Inspection System for LCD Color Filter Panels”, K-NAKASHIMA /General Manager of Engineering Division Lasertec Corporarion, IMTC ''94 May 10-12, Hamamatsu.
[18] S.W. Kim and D.S. Yoon, “Rapid defect inspection of display devices with optical spatial filtering”, Department of Mechanical Engineering, Part of the Europto Conference on Optical Measurement Systems for Industrial Inspection Munich, Germany • June ,SPIE Vol. 382, 1999.
[19] 邱學源,導光板品質自動檢測系統之研製,碩士論文,國立高雄第一科技大學機械與自動化工程系,2004。
[20] B. C. Jiang, C. C. Wang and H. C. Liu, “Liquid crystal display surface uniformity defect inspection using analysis of variance and exponentially weighted moving average techniques”, International Journal of Production Research, Vol. 43, No. 1, 1 January 2005, pp.67-80.
[21] E. S. Gadelmawla, “A vision system for surface roughness characterization using the gray level co-occurrence matrix”, NDT&E international 37, 2004, pp.577-588.
[22] A. L. Amet, A. Ercil,“Texture Defect Detection using domain co-occurrence matrices”, Image Analysis and Interpretation, IEEE Southwest Symposium, 1998, pp.205-210.
[23] H. S. Don, K. S. Fu, C. R. Liu and W. C. Lin, “Metal surface inspection using image processing techniques”, IEEE Trans. System, Man, and Cybernetic, Vol. 3,1, 1984, pp.139-146.
[24] A. Abouelela, H. M. Abbas, H. Eldeeb, A. A. Wahdan, S. M. Nassar, “Automated vision system for localizing structural defects in textile fabrics”, Pattern Recognition Letters 26, 2005, pp.1435–1443.
[25] 楊榮華,應用灰階共變異矩陣之多重指標於瑕疵檢測,碩士論文,元智大學工業工程與管理研究所,2002。
[26] 林祥璋,應用共變異矩陣法於IC雷射打印瑕疵檢測之研究, 碩士論文,國立台灣科技大學自動化及控制研究所,2002。
[27] D. M. Tsai and B. T. Lin, “Defect Detection of Gold-Plated Surfaces on PCBs Using Entropy Measures”, International Journal of Advanced Manufacturing Technology 20 (6), 2002, pp. 420-428
[28] J. G. Campbell, C. Fraley, D. Stanford, F. Murtagh, A. E. Raftery, “Model-Based Mesed Methods for Textile Fault Detection”, John Wiley & Sons, Inc. , Vol. 10, 1999, pp.339-346.
[29] Y. C. Chan, K. H. Pang, “Fabric defect detection by Fourier analysis”, IEEE Trans. No Industry Application , Vol. 36, 2000, pp.1267-1276.
[30] 黃哲韻,應用機器視覺於隨機性紋路表面之瑕疵檢測, 碩士論文, 私立元智大學工業工程與管理研究所,1999。
[31] 郭志嘉,應用三維傅立葉分析於非同質性隨機紋路表面之瑕疵檢測, 碩士論文, 私立元智大學工業工程與管理研究所,2000。
[32] D.A. Clausi, M.E. Jernigan, “Design Gabor filters for optimal texture separability”, Pattern Recognition, 2000, pp1835-1849.
[33] D.M. Tsai and C.P. Lin, “Fast Defect Detection in Textured Surfaces Using 1D Gabor Filters”, International Journal of Advanced Manufacturing Technology , 2002 , pp.664-675.
[34] A. L. Amet, A. Ertuzun and A. Ercil, “Texture Defect Detection Using Subband Domain Co-occurrence Matrices”, IEEE Southwest Symposium on Image Analysis and Interpretation, 1998, pp.205-210.。
[35] M. C. Hu and I. S. Tsai, “The Inspection of Fabric Defects by Using Wavelet Transform”, J. Text.. Inst., Part 1, Vol. 91, No. 3, 1999, pp.420-433.
[36] S. S. Hamed and S. G. James , “Robust Defect Segmentation In Woven Fabrics”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition ,1998, June 23 – 25, pp. 938.
[37] 林宏達、陳志松,「以 能量為基礎之小波特徵多變量處理模式應用於表面瑕疵之檢測」,Journal of the Chinese Institute of Industrial Engineers, Vol. 21, No. 2, 2004,pp.121-135。
[38] 陳志松,應用多變量 統計量於具漸層式紋路瑕疵之自動化檢測探討-以SBL之水紋瑕疵為例, 碩士論文,朝陽科技大學工業工程與管理系,2002。
[39] J. A. Lay, L. Guan, “Image Retrieval Based On Energy Histograms Of The Low Frequency DCT Coefficients”, IEEE International Conference On Acoustics, Speech, And Signal Processing , 1999, pp.3009-3012.
[40] B. Chen, S. Latifi, J.Kanai, “Edge enhancement of remote sensing image data in the DCT domain”, Elsevier Science, Image and Vision Computing 17 , 1999, pp.913–921.
[41] S. Obdrzalek and J. Matas, “Image Retrieval Using Local Compact DCT-based Representation”, DAGM’03, 25th Pattern Recognition Symposium, Magdeburg, Germany , September 10-12, 2003.
[42] S. Golam and A. Ajith, “ DCT BASED TEXTURE CLASSIFICATION USING SOFT COMPUTING APPROACH”, Malaysian Journal of Computer Science, 2004.
[43] M. Yumi, Y. Ryoji, T. Tohru, Y. Toru, T. Satoshi, “ Evaluation and discrimination method of “mura “ in liquid crystal displays by just noticeable difference observation”, Optomechatronic Systems III, Toru Yshizawa, Editor , Proceedings of SPIE,Vol. 4902, 2002, pp.715-722.
[44] M. Y, Y. Ryoji , T. Tohru , M. Kiyo, T. Kosei , T. Satoshi, “ Quantitative evaluation of luminace non-uniformity in liquid crystal displays based on sensory analysis”, SPIE Vol. 4789, 2002, pp.283-290.
[45] “New Standard:Definition of Measurement Index (SEMU) For Luminance Mura in FPD Image Quality Inspection”, SEMI Draft Document #3324.
[46] 穆紹綱,數位影像處理,台北:台灣培生教育出版公司,2003。
[47] 林宸生,數位信號:影像與語音處理,台北:全華科技圖書公司,1997。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top