跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 12:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝宜芳
研究生(外文):Yi-Fang Hsieh
論文名稱:溶膠法製備二氧化鈦與性質分析-從水熱到煅燒;從奈米粒到奈米薄膜-
論文名稱(外文):Preparation and Characterization of TiO2 by Sol-gelFrom Hydrothermal to Calcination;from Nano-powder to Nano-film
指導教授:蘇昭瑾
指導教授(外文):Chao-Chin Su
口試委員:吳春桂林景泉
口試委員(外文):Chun-Guey WuJiing-Chyuan Lin
口試日期:2006-06-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:80
中文關鍵詞:二氧化鈦光催化水熱奈米薄膜亞甲基藍
外文關鍵詞:Titanium dioxidePhotocatalytic degradationHydrothermalCalcinationNanoparticleFilmMethylene blue
相關次數:
  • 被引用被引用:3
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
二氧化鈦奈米材料的光催化特性和其結晶性、顆粒大小、型態和表面積有密切關係。本研究利用立體障礙較大的正四丁基氧化鈦(Ti[n(C4H9O)]4)為前驅物,利用H2SO4、CH3COOH、HCl催化產生的混合膠體,經煅燒或水熱過程,在不同溫度、反應時間產生不同大小、不同相態比例的二氧化鈦。發現無論是溶膠/煅燒(sol-calcination)或溶膠/水熱(sol-hydrothermal)法皆可製備得良好催化效果的奈米級二氧化鈦。利用化學分析能譜儀(ESCA)鑑定二氧化鈦組成;穿透式電子顯微鏡(TEM)觀察其粒徑大小及外觀形狀;以X光繞射儀(XRD)分析粉體的結晶相、結晶強度及各相所佔比例;以氮氣吸附儀(BET)量測粉體的表面積大小。最後以亞甲基藍(methylene blue)之光裂解反應作為產物二氧化鈦光催化活性分析的指標。
在水熱方面,不同水熱時間經低溫150 oC烘乾的樣品由TEM觀測為分散性佳且平均粒徑約為10 ~ 40 nm,均為催化效果較佳的銳鈦礦相。當水熱時間由0 小時增加到48小時比表面積由255遞減為74 m2/g,結晶區塊由1.75 nm 增加到18.11 nm,表示隨水熱時間的增加,二氧化鈦粒徑變大,亞甲基藍的催化效果,由結晶性好的具有較好的催化效果。水熱後溶液,我們進一步以dip-coating的方式將它轉鍍於玻璃基板上並以150 ~550 oC溫度乾燥。單次鍍膜可得20-40 nm銳鈦礦相粒子切面約80 nm具良好穿透性的二氧化鈦薄膜。
在煅燒方面,隨煅燒溫度的增加,二氧化鈦會進行銳鈦礦相至金紅石相的相轉換,XRD的結果發現不同酸催化影響其相態的穩定性,然其轉換溫度高低為HCl (600 oC) < CH3COOH (700 oC) < H2SO4 (>800 oC)。由於煅燒會造成表面-OH基的縮合,至使顆粒變大,比表面積也下降,減少催化過程中表面的吸附量,導致光催化活性明顯的降低,煅燒過程中產生的相變化也不利於其催化效果。
Titanium dioxide (TiO2) is one of the most important semiconductors for photocatalytic application due to its strong oxidizing power of its holes, high photostability and redox selectivity. In particular, the anatase phase TiO2 has been extensively studied due to its high photocatalytic activity in the decomposition of various organic pollutants in the environment. In this thesis, the nanocrystal TiO2 was synthesized by a sol-based approach. The heat treatment was carried out under the hydrothermal and/or calcinations conditions. Titanium (IV) n-butoxide (Ti(O-Bu)4,) was used as a precursor of TiO2, in conjunction with sulfuric acid (H2SO4), acetic acid (CH3COOH), or hydrochloric acid (HCl) as a peptizer. The products were characterized by transmission electron microscopy (TEM) for particle dimension and morphology, by X-ray diffraction (XRD) for crystal structure, by electron spectroscopy for chemical analysis (ESCA) for chemical state, and by Brunauer-Emmitt-Teller (BET) for surface area. The effect of calcination or hydrothermal parameters on the formation of phase and particle sizes for different temperatures and various reaction times have been studied systematically. The photocatalytic activity of as-prepared TiO2 was tested in the reaction of methylene blue (MB) photodegradation in aqueous solution.
The results show strong correlation between the structure evolution, particle sizes, and photocatalytic performance of the TiO2 samples to the different treatment conditions. The average particle size of hydrothermal-treated TiO2 samples is about 10-40 nm with all anatase phase and good dispersion. Upon increasing of hydrothermal period from 0 to 48 hours, BET surface area decreases from 225 to 74 m2/g, while crystal domain increases from 1.75 to 18.11 nm, indicating better crystallization. It also shows better photocatalytic efficiency for TiO2 samples with prolong heat treatment. Followed by the hydrothermal treatment, the TiO2 sol. was transferred onto the glass substrate by dip-coating and dried at 150-550 oC to form TiO2 thin film. The film thickness is about 80 nm with all anatase, 20-40 nm TiO2 nano particles.
For calcinations-treated TiO2, a phase transformation from anatase to rutile (A→R) was aroused based on XRD. The dependence of transformation temperature is HCl (600 oC) < CH3COOH (700 oC) < H2SO4 (> 800 oC)。 Due to the condensation effect of surface hydroxyl groups upon calcinations, the TiO2 particles enlarge significantly with lower BET surface area as well as lower adsorption capability. A plausible explanation is discussed.
目錄

中文摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 奈米觸媒的特性 2
1-3 研究動機 3
第二章 文獻回顧 4
2-1 二氧化鈦的晶體結構 4
2-2 二氧化鈦的製備方法 6
2-3 二氧化鈦光催化反應原理 9
2-4 影響二氧化鈦光催化活性的因素 11
2-4.1粒徑大小的影響 12
2-4.2結晶型態的影響 13
2-4.3負載金屬的影響 14
2-5亞甲基藍(Methylene blue)的介紹 15
第三章 實驗部分 19
3-1 實驗藥品及器材 19
3-1.1玻璃基材的清洗與選擇 19
3-2 二氧化鈦的製備 20
3-2.1 溶膠-煅燒法製備奈米二氧化鈦 22
3-2.2 溶膠-水熱法製備奈米二氧化鈦 23
3-2.3 溶膠-水熱法製備奈米二氧化鈦薄膜 24
3-3 二氧化鈦與亞甲基藍的光催化反應 25
3-3.1實驗設備 25
3-3.2背景實驗 26
3-4 實驗儀器 28
第四章 結果與討論 29
4-1溶膠-煅燒法製備奈米級二氧化鈦 29
4-1.1 化學分析能譜儀(ESCA)分析 30
4-1.2 X光繞射儀(XRD)分析 32
4-1.3 穿透式電子顯微鏡(TEM)分析 36
4-1.4 比表面積(BET)測試 37
4-1.5 二氧化鈦與亞甲基藍的光催化反應結果 39
4-2溶膠-水熱法製備奈米二氧化鈦 45
4-2.1 化學分析能譜儀(ESCA)分析 47
4-2.2 X光繞射儀(XRD)分析 51
4-2.3 穿透式電子顯微鏡(TEM)分析 56
4-2.4 比表面積(BET)測試 61
4-2.5 二氧化鈦與亞甲基藍的光催化反應結果 62
4-3溶膠-水熱法製備奈米二氧化鈦薄膜 65
4-3.1 化學分析能譜儀(ESCA)分析 67
4-3.2 X光繞射儀(XRD)分析 69
4-3.3 掃描式電子顯微鏡(SEM) 70
4-3.4 二氧化鈦薄膜與亞甲基藍的光催化反應結果 73
第五章 結論 75
參考文獻 77
[1] S. Wu C. J., H. Tseng I.,W. Chang C.Applied Catalysis B: Environmental 37 (2002) 37.
[2] H. Lee J., M. Kang, J. Choung S., K. Ogino, S. Miyata, S. Kim M., Y. Park J.,B. Kim J.Water res. 38 (2004) 713.
[3] A. Sclafani,M. Herrmann J.J. Ph.ys. Chem. 100 (1996) 13655.
[4] M. Andersson, L. Osterlund,S. LjungstromJ. Ph.ys. Chem. B 106 (2002) 10674.
[5] Dawson William J.Cream. Bull. 67 (1988) 1673.
[6] V. Kolen''ko Yu., A. Burukhin A., R. Churagulov B.,N. Oleinikov N.Inorganic Materials 40 (2004) 822.
[7] Xing-Wang Bao, Shan-Shan Yan, Feng Chen,Jin-Iong ZhangMaterials Letters 59 (2005) 412.
[8] L. Linsebigler A., G. Lu,T. Yates J. J.Chem. Rev. 95 (1995) 735.
[9] M. Anpo, T. Shima, S. Kodama,Y. KubokawaJ. Phys. Chem. B 91 (1987) 4035.
[10] D. Farin, J. Kiwi,D. AvnirJ. Phys. Chem. 93 (1989) 5851.
[11] Z. Zhang, C.-C Wang, R. Zakaria,J.Y YingJ. Phys. Chem. B 102 (1998) 10871.
[12] H. Yamashita, H. Nishiguchi, N. Kamada,M. AnpoResearch on Chemical Intermediates 20 (1994) 815.
[13] R. Bacsa R.,J. KiwiAppl. Catal. B: Environmental 16 (1998) 19.
[14] H. Yamashita, Y. Fuji, Y. Ichihashi,S. EharaCatalysis Today 45 (1998) 221.
[15] H. Tada, K. Teranishi,S. ItoLangmuir 16 (2000) 3304.
[16] H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard,M. Herrmann J.Appl. Catal. B: Environmental 39 (2002) 75.
[17] T. Zhnag, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao,N. SerponeJ. Photochem. Photobiol. A 140 (2001) 163.
[18] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard,M. Herrmann J.Appl. Catal. B: Environmental 31 (2001) 145.
[19] T. Zhang, T. Oyama, S. Horikoshi, H. Hidaka, J. Zhao,N. SerponeSol. Energy. Mater. Solar Cells 73 (2002) 287.
[20] W. Matthews R.J. Chem. Soc. Faraday Trans. 85 (1989) 1291.
[21] Zhang T., Oyama T.,Aoshima A.J. Photochem. Photobiol. A 140 (2001) 163.
[22] Y. Zheng, E. Shi, S. Cui, W. Lin,X. HuJ. Am. Ceram. Soc. 83 (2000) 2634.
[23] Boiadjieva Tzvetanka, Cappelletti Giuseppe, Ardizzone Silvia, Rondinini Sandra,Vertova AlbertoPhys. Chem. Chem. Phys. 6 (2004) 3535.
[24] Chen-Chi. Wang.,Jackie-Y. Ying.Chem. Mater. 11 (1999) 3113.
[25] A. Barringer E.,K. Bowen H.Langmuir 1 (1985) 420.
[26] Li Baorang, Wang Xiaohui, Yan Minyu,Li LongtuMaterials Chemistry and Physics 78 (2002) 184.
[27] C Su., B.-Y. Hong,C.-M. TsengCatalysis Today 96 (2004) 119.
[28] S.-J. Kim, S.-D. Park, H. Jeong Y.,S. ParkJ. Am. Ceram. Soc. 82 (1999) 927.
[29] J. Ovenstone,K. YanagisawaChem. Mater. 11 (1999) 2770.
[30] T. Ohno., M. Tokieda., S. Higashida.,M. Matsumura.Appl. Catal. A: Chem. 244 (2003) 383.
[31] Y. Tanaka.,M. Suganuma.J. Sol-Gel Sci. Technol 22 (1996) 383.
[32] C. Nadia R., Machado Fernandes,S. Veronice S.Catalysis Today 107-108 (2005) 595.
[33] M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi,M. ToyodaInternational Journal of Inorganic Materials 3 (2001) 809.
[34] A. Zaban, T. Aruna S., S. Tirosh, A. Gregg B.,Y. MastaiJ. Phys. Chem. B 104 (2000) 4130.
[35] Li Guangshe, Li Liping, Boerio-Goates Julianan,Woodifeld Brian F.J. Am. Chem. Soc. 127 (2005) 8659.
[36] A. Kato., Y. Takeshita.,Y. Katatae.Mater. Res. Soc. 155 (1989) 13.
[37] H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata,S. YanagidaJ. Mater. Chem. 11 (2001) 1694.
[38] S. Morrison. (New York; 1980).
[39] R. Van Grieken, J. Lopez-Munoz M., J. Aguado,J. MaruganJ. Photochem. Photobiol. A: Chem. 148 (2002) 315.
[40] F. Sayilkan, M. Asilturk, S. Erdemoglu, M. Akarsu, H. Sayilkan, M. Erdemoglu,E. ArpacMaterials Letters 60 (2006) 230.
[41] Bunsho Ohtani, Yoshimasa Ogawa,Sei-ichi NishimotoJ. Phys. Chem. B 101 (1997) 3746.
[42] H. Hayashi,K. ToriiJ. Mater. Chem. 12 (2002) 3671.
[43] M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng,R. XuChem. Mater. 14 (2002) 1974.
[44] J. Liqiang, S. Xiaojum, C. Weimin, X. Zili, D. Yaoguo,F. HonggangJ. Phys. Chem. Solids 64 (2003) 615.
[45] J. Yu., X. Zhao.,Q. Zhao.Thin Solid Films 379 (2000) 7.
[46] B. Almquist Catherine,Pratim BiswasJournal of Catalysis 212 (2002) 145-156.
[47] Takeshi Miki, Kaori Nishizawa, Kazuyuki Suzuki,Kazumi KatoMaterials Letters 58 (2004) 2751.
[48] I. Kontos. A., M. Arabatzis. I., S. Tsoukleris. D., G. Kontos. A., C. Bernard. M., E. Petrakis. D.,P. Falaras.Catalysis Today 101 (2005) 275.
[49] H. Lee S., M. Kang, M. Cho S., Y. Han G., W. Kim B., J. Yoom K.,H. Chung C.J. Photochem. Photobiol. A 146 (2001) 121.
[50] Wenguang Zhang, Weimin Liu,Chengtao WangWear 253 (2002) 377.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top