跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭彥君
研究生(外文):Ian-Chun Cheng
論文名稱:利用金奈米顆粒的自組裝現象製作單電子電晶體
論文名稱(外文):Single-Electron Transistors with Self-Assembled Gold Nanoparticles
指導教授:蔡麗珠蔡麗珠引用關係
口試委員:蘇昭瑾林宏一陳啟東
口試日期:2006-07-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:21
中文關鍵詞:單電子電晶體金奈米顆粒自組裝
外文關鍵詞:Single-electron transistorGold particleSelf-assembly
相關次數:
  • 被引用被引用:1
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
我們提出了一種利用金奈米顆粒的自組裝 (self-assembly) 現象以由下而上(bottom-up)的方式來製作單電子電晶體 (single-electron transistors) 的方法。此自組裝乃是檸檬酸鹽 (citrate) 溶液中的金奈米顆粒以動力學方式堆積所產生的現象。利用此自組裝的機制,金奈米顆粒會組裝成具有極小間距的碎形(fractal)結構。再者,由於奈米尺寸的顆粒具有很小的電容 (capacitance),此時電子穿隧 (tunnel) 進入奈米顆粒所產生的充電效應 (charging effect) 將可以容易的被觀察到。利用自組裝的機制及充電效應,我們製作出以金奈米顆粒為中央島 (island) 的單電子電晶體。此論文的主要工作內容包涵兩大部份,第一個部份是探討金奈米顆粒自組裝的機制;第二部份是應用此機制製作成單電子電晶體,並量測其特性。這些單電子電晶體電子元件表現出了明顯的庫倫阻斷現象 (coulomb blockade) 而且操作溫度可達155K。
We present a bottom-up method for fabrication of single-electron transistors by utilizing self-assembly of gold nanoparticles. The self-assembly is driven by the kinetic aggregation of gold nanoparticles in citrate solution. With this mechanism, gold nanoparticles are assembled into fractal structures with very small gap in between particles. Moreover, because of the small capacitance associated with the nano sized particles, the charging effect for electrons to tunnel into the particles become appreciable. Making use of the self-assembly mechanism and the charging effect, we made single electron transistors with gold particle islands. This thesis work is divided into two parts: the first part is to investigate the mechanism in the self-assembly of gold particles; the second part is to apply this mechanism to fabricate the single-electron transistors. These devices exhibited prominent Coulomb blockade behavior which persisted up to 155 K.
1. INTRODUCTION………………………………... 1
1.1 Background and Motivation………………………… 1
1.2 Fundamental of Single-Electron Transistor………... 1
1.2.1 Coulomb Blockade………………………........... 5
1.2.2 Coulomb Oscillation…………………………… 7
1.3 Why do we use Self-Assembly………………………. 8
1.4 Self-Assembly inspired SETs………………………... 8
2. MATERIALS AND METHODS………………… 11
2.1 Synthesis of Au Nanoparticles………………………. 11
2.2 Self-Assembly of Au Nanoparticles…………………. 12
2.3 Fabrication of External Leads………………………. 13
2.4 Deposition of Au particle formed Fractal Structure 14
2.5 Fabrication of Inner Leads………………………….. 15
3. EXPERIMENT RESULT………………………… 17
4. CONCLUSION…………………………………… 19
5. REFERENCE……………………………………... 20
[1] “Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures”, edited by H. Grabert and M. H. Devoret, NATO ASI Series B, Physics Vol. 294, Plenum Press, New York, 1992.
[2] C. D. Chen and J. S. Tsai, 100-K Operation of Al-Based Single Electron Transistors, Y. Nakamura, Jpn. J. Appl. Phys., 35, L1465-L1467 (1996).
[3] J. V. Barth, G. Costantini and K. Kern, Engineering atomic and molecular nanostructures at surfaces, Nature, 437, 671-679 (2005).
[4] C. T. Black, Self-aligned self assembly of multi-nanowire silicon field effect transistors, Appl. Phys. Lett., 87, 163116-1~3 (2005).
[5] C. Klinke, J. B. Hannon, A. Afzali, and P. Avouris, Field-Effect Transistors Assembled from Functionalized Carbon Nanotubes, Nano Lett., 6, 906-910 (2006).
[6] C. S. Wu, C. D. Chen, S. M. Shih and W. F. Su, Single-electron transistors and memory cells with Au colloidal islands, Appl. Phys. Lett., 81, 4595-4597 (2002).
[7] J. H. Lee and J. Cheon, S. B. Lee, Y. W. Chang, S. I. Kim, and K. H. Yoo, DNA linker controlled single electron tunneling behavior of nanoparticle assembly, J. Appl. Phys., 98, 084315-1~3 (2005).
[8] D. N. Weissa and X. Brokmann, L. E. Calvetb and M. A. Kastner, M. G. Bawendi, Multi-island single-electron devices from self-assembled colloidal nanocrystal chains, Appl. Phys. Lett., 88, 143507-1~3 (2006).
[9] K. C. Grabar, R. G. Freeman, M. B. Hommer and M. J. Natan, Preparation and Characterization of Au Colloid Monolayers, Anal. Chem., 67, 735-743 (1995).
[10] T. A. Witten., Jr., and L. M. Sander, Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon, Phys. Rev. Lett., 47, 1400-1403 (1981).
[11] D. A. Weitz and M. Oliveria, Fractal Structure Formed by Kinetic Aggregation of Aqueous Gold Colloids, Phys. Rev. Lett., 52, 1433-1436 (1984).
[12] J. Liu, W. Y. Shih, M. Sarikaya, I. A. Aksay, Fractal colloidal aggregates with finite interparticle interactions: Energy dependence of the fractal dimension, Phys. Rev. A, 41, 3206-3213 (1990).
[13] J. Stankiewicz, M. A. C. Vílchez and R. H. Alvarez, Two-dimensional aggregation of polystyrene latex particles, Phys. Rev. E, 47, 2663-2668 (1993).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top