跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 07:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李建宗
研究生(外文):Chien-Tsung Lee
論文名稱:高密度波長分工多工系統內鐘型化光纖光柵的應用與分析
論文名稱(外文):Applications and Analysis of Apodized Fiber Gratings For Dense Wavelength-Division Multiplexing Fiber Communications
指導教授:余合興
口試委員:呂海涵蔡五湖
口試日期:2006-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:93
中文關鍵詞:鐘型化光纖光柵布拉格反射係數脈波發散補償器耦合係數高密度波長分工多工系統
外文關鍵詞:Apodized Fiber GratingBragg Reflectivitydispersion CompensatorCoupling coefficientDWDM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要著重在鐘型化光纖光柵應用於「高密度分波多工系統」(DWDM)系統中之最佳化模擬與分析。除了對均勻、漸變週期以及鐘型化光纖光柵的主要特性進行模擬與分析以外,對於DWDM系統,在通道間距為100、50及25 GHz的系統,以系統各別需求為前提,進行反向的鐘型化光纖光柵設計,其反射光譜寬度及旁模抑制比方面,均符合國際電信聯盟 ( ITU ) 的規定;本研究分別設計出具有112.8、84.2及53.1 dB等旁模抑制比之光柵,此良好特性光柵足供光纖通訊濾波之用。
此外,光訊號的時間群延遲振盪的幅度大小是影響高位元率通訊系統的一個關鍵因素。本研究發現一種新型鐘型化漸變光纖光柵(Apodized linearly chirped fiber Bragg gratings, ACFBG)可以最有效地補償前述振盪所引起的不良效應,以40 Gb/s光通訊系統為例,最佳脈波發散補償距離達140公里;光功率折損為0.3 dB、眼圖開闔比為10.0 dB、位元誤差率為3.53E-010及訊號脈寬回復率為1.6,都比目前光纖光柵有較佳的表現。
Characterization and analysis of apodized, including both uniform and chirped, fiber gratings were investigated in this work. For the optical filtering in the dense wavelength-division multiplexing (DWDM) systems, apodized gratings with different channel spacings of 100G, 50G, 25GHz were designed, using inverse processes, to meet the specific requirements set up by International Telecommunication Union. The best gratings obtained for the above channel spacings exhibit improved sidelobe suppressions of 112.8 dB, 84.2 dB, and 53.1 dB, in their Bragg reflectivity spectra, respectively.
Moreover, it was found that the magnititude of time-delay variation of the optical signal pulse would strongly affect system performance, particularly for high-bit rate transmissions. A new sort of the apodized chirped fiber Bragg gratings (ACFBG) was found. This grating structure provided best dispersion compensation, compared to other work, resulting from the above time delay variation. Using this grating for dispersion compensation, take the 40Gb/s system for example, the best compensation distance is 140 km, power penalty is 0.3 dB, Eye-opening penalty is 10.0 dB, Bit error rate is 3.53E-10 and signal restoration rate is 1.6. To the best of our knowledge, this ACFBG can provide superior system performance to those of other work.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 ...1
1.1 前言 .1
1.2 光纖訊號的發散 .2
1.3 光纖系統內的濾波技術 .3
1.3.1 介質濾波器 .3
1.3.2 布拉格光纖光柵 .4
1.3.3 陣列波導光柵 .5
1.3.4 繞射光柵 .7
1.4 研究動機與目的 .7
1.5 論文架構 .8
1.6 參考文獻 .9
第二章 光纖光柵的原理與製造 .11
2.1 布拉格光纖光柵原理 .11
2.1.1 各種光纖光柵的構造及其特性 .11
2.1.2 布拉格反射 .14
2.1.3 耦合模理論 .16
2.2 光纖光柵的製造方法 .18
2.2.1 駐波寫入法 .18
2.2.2 全像干涉法 .18
2.2.3 相位光罩寫入法 .18
2.3 光纖光柵的應用 .19
2.4 本章結論 .20
2.5 參考文獻 .20
第三章 光纖光柵的特性模擬與分析 .22
3.1 均勻式光纖光柵的特性模擬與分析 .22
3.1.1 均勻式光纖光柵 .22
3.1.2 反射光譜寬度的模擬 .23
3.1.3 折射指數調變平均變化的模擬 .25
3.1.4 相位、延遲及脈波發散的模擬 .27
3.1.5 能見度的模擬 .31
3.2 週期漸變光纖光柵的特性模擬與分析 .33
3.2.1 週期漸變光纖光柵介紹 .33
3.2.2 時間群延遲的模擬 .35
3.3 鐘型化光纖光柵的特性模擬與分析 .36
3.3.1 鐘型化光纖光柵介紹 .36
3.3.2 鐘型化光纖光柵特性的模擬 .37
3.3.3 折射指數調變平均變化與延遲線性化特性 .38
3.4 本章結論 .41
3.5 參考文獻 .42
第四章 布拉格光纖光柵於DWDM系統中濾波及脈波發散補償之模擬
與分析 .44
4.1 高密度分波多工系統介紹 .44
4.2 均勻鐘型化光纖光柵的模擬與分析 .46
4.2.1 均勻鐘型化光纖光柵之特性需求與設計步驟 .46
4.2.2 小結 .54
4.3 非均勻鐘型化光纖光柵 .56
4.3.1 線性週期漸變鐘型化光纖光柵在光纖脈波發散管理中所
扮演的角色 .57
4.3.2 線性週期漸變鐘型化光纖光柵理論 .58
4.3.3 線性週期漸變鐘型化光纖光柵(ACFBG) .60
4.3.4 高斯鐘型化線性週期漸變函數的模擬及分析 .60
4.3.5 Hyperbolic-tangent(tanh)鐘型化線性週期漸變函數之模
擬與分析 .64
4.4 各類鐘型化線性週期漸變函數模擬及結果比較 .68
4.4.1 小結 .73
4.5 各類光柵的脈波發散管理及系統評估 .74
4.5.1 線性週期漸變鐘型化光纖光柵(ACFBG)的元件特性 .74
4.5.2 光柵系統特性的評估 .74
4.5.3 小結 .82
4.6 討論 .83
4.6.1 時間群延遲位移之改善 .83
4.6.2 可調式光纖光柵 .85
4.7 參考文獻 .87
第五章 結 論 .91
論文發表 .93
[1] Dennis Derickson,Fiber Optics Test and Measurement ,Prentice Hall PTR, New Jersey,pp9-10,1998.
[2] Andreas Othonos, Kyriacos Kalli ,Fiber Bragg Gratings : Fundamentals and Applications in Telecommunications and Sensing , Artech House, Boston , pp.272-274, 1999.
[3] P.C. Becker, N.A. Olsson, J.R. Simpson, .Erbium-doped fiber Amplifiers fundamentals and technology, Academic Press, San Diego, 1999.
[4] Litchinister,N.M.,et.,“Dispersion of Cascaded Fiber Gratings in WDM Lightwave Systems”, Journal of lightwave technology, Vol. 16, pp1523-1529, 1998.
[5] Raman Kashyap, Fiber Bragg Gratings, Academic Press, San Diego, pp. 265-270,1999.
[6] C.R. Giles, “Lightwave applications of fiber Bragg gratings”, IEEE Journal of Lightwave Technology, v.15, n.8, Aug. 1997, pp. 1391-1404.
[7] Alejandro Carballar, Miguel A. Muriel, “Fiber grating filter for WDM systems: An improved design” IEEE Photonics Technology Letters, Vol. 11, No. 6 June 1999, pp. 694-696.
[8] M. J. N. Lima, A. L. J. Teixeira, J. R. F. da Rocha, “Optimization of apodized fiber grating filters for WDM systems” Institute of telecommunications, University of Averiro, 3810 Avweiro, Portugal.
[9] Highwave Optical Technologies , Fiber Bragg Gratings, 2002.
[10] Newport, Photonics,pp. 382,1999/2000.
[11] Malo,B.,et al.,“Apodised in-Fibre Bragg Grating Reflectors Photoimprinted Using A Phase Mask”,Electronics Letters,Vol.31,pp.223-225,1995.
[12] D.Weidman,“Fiber Bragg Gratings Enhance Real-World Applications”, Laser Focus World , pp.99-103, March 1999.
[13] Optiwave Corporation, IFO Gratings,2001.
[14] T. Erdogan,“Fiber Grating Spectra”, Journal of lightwave technology, Vol. 15, No. 8, pp1277-1294, 1997.
[15] K. Hinton, “Dispersion compensateion using apodized bragg fiber gratings in transmitsion,” J. Lightwave Technol., vol. 16, p. 2336, 1998.
[16] F. Ouellette, J. F. Cliché, and S. Gagnon, “All-fiber device for chromatic dispersion compensation based on chirped distribute resonant coupling,” J. Lightwave Technol., vol. 12, p. 1728, 1994.
[17] P. S. Cross and H. Kogelink, “Side lobe suppression in corrugated waveguide filters,” Opt. Lett., vol. 1, pp. 43-45, 1977.
[18] R. Kashyap, H. G. Froehlich, A. Swanton, and D. J. Armes, “1.3 m long super-step-chirped fiber Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation,” Electron. Lett., vol. 32, pp. 1807–1809, 1996.
[19] R. Kashyap, Fiber Bragg Gratings, 1st ed. New York: Academic, 1999.
[20] L. Dong, M. J. Cole, A. D. Ellis, M. Durkin, M. Ibsen, V. Gusmeroli, and R. I. Ennser, “40 Gbit/s 1.55 um transmission over 109 km of nondispersion shifted fiber with long continuously chirped fiber gratings,” presented at the Optical Fiber Communications Conference, Dallas, TX, 1997.
[21] M. Ibsen, M. K. Durkin, K. Ennser,M. J. Cole, and R. I. Ennser, “Long contiuosuly chirped fiber Bragg gratings for compensation of linear and 3rd order dispersion,” in Proc. ECOC’97, vol. 2, 1997, pp. 49–52.
[22] D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Marti, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol., vol. 14, pp. 2581-2588,Nov. 1996.
[23] Karin Ennser, Mikhail N. Zervas, and Richard I. Ennser, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE Journal of quantum electronics, vol. 34, No. 5, May 1998.
[24] L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Physic. Rev. E, vol. 48, no. 6, pp. 4758-4767, 1993.
[25] J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Amer. A, vol. 11, pp. 1307-1320, 1994.
[26] G. P. Agrawal Nonlinear Fiber Optics, Academic Press (2001).
[27] Dietrich Marcuse, Curtis R. Menyuk, “Simulation of single-channel optical systems at 100Gb/s”, J. Lightwave Technol., vol. 17, pp. 564–569, April 1999.
[28] G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters” IEEE Journal of quantum electronics, vol. 37, No. 4, April, 2001.
[29] A. E. Willner and B. Hoanca, “Fixed and tunable management of fiber chromatic dispersion,” in Optical Fiber Telecommunications IV, I. P. Kaminow and T.Li, Eds. New York: Academic, Mar. 2002.
[30] T. N. Nielsen, B. J. Eggleton, J. A. Rogers, P. B. Westbrook, P. B. Hansen, and T. A. Strasser, “Fiber Bragg grating tunable dispersion compensator for dynamic post dispersion optimization at 40 Gbit/s,” IEEE Photon. Technol. Lett., vol. 12, pp. 173–175, 2000.
[31] M. I. Hayee and A. E. Willner, “Pre- and post-compensation of dispersion nonlinearities in 10 Gb/s WDM systems,” IEEE Photon. Technol. Lett., vol. 9, pp. 1271–1273, 1997.
[32] W. H. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol., vol. LT-4, pp. 1552–1555, 1986.
[33] C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scott, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett., vol. 11, pp. 1623–1625, 1999.
[34] L. D. Garrett, A. H. Gnauck, M. H. Eiselt, R.W. Tach, C. Yang, C. Mao, and S. Cao, “Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16*10 Gb/s WDM transmission over 480 km standard fiber,” presented at the Optical Fiber Communications, Baltimore, MD, 2000, Postdeadline PD-7.
[35] B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol., vol. 18, pp. 1418-1432, 2000.
[36] F. Ouellette, “Dispersion cancellation using linearly chirped Bragg filters in optical waveguides,” Opt. Lett., vol. 12, pp. 847–849, 1987.
[37] R. Kashyap, H. G. Froehlich, A. Swanton, and D. J. Armes, “1.3 m long super-step-chirped fiber Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation,” Electron. Lett., vol. 32, pp. 1807–1809, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top