跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 04:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭家林
研究生(外文):Chia-Lin Xiao
論文名稱:1.55µm附近InGaAlAs/InP多重量子井雷射二極體的設計與研製
論文名稱(外文):Design and Fabrication of 1.55-μm InGaAlAs/InP Mutiple Quantum Well Laser Diodes
指導教授:余合興
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:95
中文關鍵詞:InGaAlAs/InP量子井雷射晶圓研磨取樣式光柵DBR雷射不連續調諧近似連續調諧
外文關鍵詞:InGaAlAs/InPQuantum-Well LasersStrained Quantum WellSampled- Grating DBR LasersQuasi-Continuous Tuning
相關次數:
  • 被引用被引用:3
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
本研究共分為兩大部分,第一部分是量子井雷射二極體的研製,第二部份是取樣式光柵DBR雷射二極體的設計與分析,研究重點分段敘述如下。
首先,本研究採用InGaAlAs/InP材料系統研製多重量子井的薄片式雷射二極體。在雷射晶片磨薄的製程中,提出了新的研磨方法來取代過去常用的手工「8」字型研磨法;使用此種的研磨方法,可以讓雷射晶片成功的從350 μm磨至120 μm厚,其晶圓平均厚度頗為均勻一致,晶片研磨成功的機率高達90 %以上;對於研製完成的雷射,使用本研究室的量測設備,測量雷射的V-I、C-V與L-I特性曲線,並與分析討論。
其次,本研究使用溫度特性特佳的InGaAlAs/InP多重量子井結構,在光耦合強度 與0.5 nm的腔模模距的條件下經適當的調諧機制,成功設計出具有172通道與旁模抑制比高達38 dB以上的取樣式光柵DBR雷射。此雷射在100 mA注入電流與30 GHz頻寬下工作時,其通道切換時間在1奈秒以內。此外,由相對強度雜訊與眼圖的模擬中,亦可知雷射具有極佳的動態特性。
中文摘要 i
英文摘要 ii
誌謝 iii
論文發表 iv
目錄 v
表目錄 viii
圖目錄 ix
第一部分 1.55 µm附近多重量子井雷射二極體的研製 1
第一章 緒論 1
1.1 研究動機 1
1.2 雷射二極體在光纖通訊中扮演的角色 2
1.3 可調諧雷射二極體(Tunable laser diodes) 3
1.3.1 單頻半導體雷射在光纖通訊的重要性 3
1.3.2 可調諧雷射簡介 4
1.3.3 取樣光柵式DBR雷射二極體(SGDBR lasers) 5
1.4 1.55 μm附近近紅外光材料系統 6
1.4.1 1.3 ~ 1.55 μm範圍內可能的材料系統 6
1.4.2 InGaAsP與 InGaAlAs量子井結構比較 6
1.5 論文結構 8
1.6 綜論 8
1.7 參考文獻 9
第二章 InGaAlAs/InP量子井雷射二極體的研製 11
2.1 雷射二極體的基本理論 11
2.1.1 電子轉移過程 11
2.1.2 粒子數倒反(Population inversion) 12
2.1.3 雷射腔內損失 13
2.1.4 雷射的振盪條件 14
2.2 雷射二極體的構造 16
2.2.1 薄片式雷射 16
2.2.2 脊式波導雷射 17
2.2.3 多重量子井結構的優越特性 17
2.3 雷射二極體的製程技術 20
2.3.1 光罩設計 20
2.3.2 電將增強式化學氣相沉基系統(PECVD) 21
2.3.3 微影製程 22
2.3.4 金屬蒸鍍 25
2.3.5 晶圓研磨 26
2.4 雷射二極體製程 29
2.5 綜論 34
2.6 參考文獻 34
第三章 量子井雷射二極體的模擬、量測與分析 36
3.1 InGaAlAs / InP多重量子井雷射的波導模擬 36
3.1.1 雷射結構細節 36
3.1.2 光模分析 37
3.2 量子井雷射二極體的電性分析 39
3.2.1 IdV/dI曲線分析 40
3.2.2 C-V曲線分析 46
3.2.3 量測結果的比較與討論 51
3.3 綜論 55
3.4 參考文獻 55
第二部分 取樣式光柵DBR雷射的設計與模擬 57
第四章 SGDBR雷射的理論與設計 57
4.1 引言 57
4.2 DBR雷射的基本理論 58
4.2.1 光模耦合理論 58
4.2.2 DBR雷射的重要參數 59
4.3 SGDBR雷射的特性 62
4.3.1 光柵特性參數 62
4.3.2 影響雷射光品質的因素 66
4.4 SGDBR雷射的設計 70
4.4.1 雷射的結構設計 70
4.4.2 SGDBR雷射的設計流程與要旨 71
4.5 綜論 73
4.6 參考文獻 73
第五章 SGDBR雷射的模擬結果與分析 75
5.1 靜態的模擬結果與分析 75
5.1.1 L-I與V-I特性 75
5.1.2 臨限電流對溫度變化 77
5.1.3 不連續的波長調諧 80
5.1.4 近似連續調諧(Quasi-continuous wavelength tuning) 83
5.2 動態的模擬結果與分析 87
5.2.1 通道波長的切換(Channel wavelength switching) 87
5.2.2 相對強度雜訊(Relative intensity noises) 88
5.2.3 眼圖 90
5.3 綜論 91
5.4 參考文獻 91
第六章 結論 94
第一章
[1] H. Ishii, Y. Tohori, M. Yamamoto, T. Tamamura, and Y. Yoshikuni, ”Modified multiple-phase-shift super-structure-grating DBR lasers for broad wavelength tuning,” IEEE Electronics Letters, 7TH vol. 30, no. 14, pp. 1141-1142, July, 1994.
[2] Amnon Yariv, Optical Electronics in Modern Communications, 5rd Ed., Oxford, New York, pp. 619-626, 1997.
[3] Kohroh Kobayashi, “Single frequency and tunable laser diodes,” Journal of Lightwave Technology, vol. 6, no. 11, November 1988.
[4] Jens Buus, “Tunable laser sources for DWDM,” Proc. of SPIE, vol. 5280, pp. 172-181, 2004.
[5] S. R. Forrest, P. H. Schmidt, R. B. Wilson, and M. L. Kaplan, “Relationship between the conduction-band discontinuities and band-gap differences of InGaAsP/InP heterojunctions,” Appl. Phy. Lett., vol. 45, no. 11, December 1984.
[6] Yoshihiro Sugiyama, Tsuguo Inata, Toshio Fugii, Yoshiaki Nakata, Shunichi Muto and Satoshi Hiyamizu, “Conduction band edge discontinuity of heterostructures,” Jpn. J. Appl. Phys., vol. 25, no. 8, pp. L648-L650, August 1986.
[7] A.Kasukawa, R.Bhat, C. E. Zah, M. A. Koza and T. P. Lee,“Very low threshold current density 1.5 um GaInAs/AlGaInAs graded-index separate confinement heterostructure strained quantum well laser diodes grown by organometallic chemical vapor deposition,” Appl.Phys.Lett, vol.59, no. 20, pp. 2486-2488, 1991.
[8] J. J. Coleman, “Strained-Layer InGaAs quantum-well heterostructure lasers,” IEEE Journal on Selected Topics in Quantum Electronics., vol. 6, no. 6, November/December, 2000.
[9] N. Yamamoto, K. Yokoyama, T. Yamanaka, and M. Yamaoto, “Design and Fabrication of Low-Threshold 1.55-µm Graded-Index Separate Confinement Heterostructure Strained InGaAsP Single-Quantum-Well Laser Diodes,” IEEE Journal of Quantum Electronics., vol. 33, no. 7, July, 1997.

第二章
[1] 余合興,半導體材料與元件(下册),中央圖書供應社,台北,民2000.
[2] H. C. Casey and M. B. Panish, Heterostructure lasers, Academic Press, New York, 1978.
[3] Dyment, J. C., “Hermite-gaussian mode patterns in GaAs junction lasers,” Appl. Phys. Lett., vol. 10, pp. 84-86, 1967.
[4] G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers, Van Nostrand Reinhold, New York, 1986.
[5] Govind P. Agrawal, “Lateral analysis of quasi-index-guided injection lasers: Transition from gain to index guiding,” J. Lightwave Tech., vol. LT-2, no.4, pp. 537-543, 1984.
[6] Yasuhoko Arakawa and Amnon Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well Lasers,”IEEE Journal of Quantum Electronics, vol. QE-21, no.10, pp1666-1674, 1985.
[7] W. R. Runyan and K. E. Bean, Semiconductor Integrated Circuit Processing Technology, section 10-7, Addison-Wesley, 1990.
[8] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, Chapter 4, 3rd edition, Oxford Science Publications, 1988.
[9] 黃金祥,「量子井雷射二極體的分析與研製」,台北科技大學碩士論文,2004.

第三章
[1] G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers, Van Nostrand Reinhold, New York, pp. 41, 1986.
[2] Wright, P. D., W. B. Joyce, and D. C. Craft., “Electrical derivative characteristics of InGaAsP buried heterostructure lasers, ” J. Appl. Phy., vol. 53, pp. 1364, 1982.
[3] Larry A. Coldren and Scott W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Interscience, 1995.
[4] 余合興,半導體材料與元件(上册),中央圖書供應社,台北,2000.
[5] 李建德,「氮化鋁銦鎵藍紫光雷射二極體之研製」,中央大學碩士論文,2004.

第四章
[1] F. Delorme, “Widely tunable 1.55 μm lasers for wavelength division multiplexed optical fiber communications, ” IEEE J. Quantum Electron., vol. 34, pp. 1706-1716, 1998.
[2] B. Mason, G.A. Fish, J. Barton, V. Kaman, L.A. Coldren, S.P. Denbaars, J. Bowers, “Characteristics of sampled grating DBR lasers with integrated semiconductor optical amplifiers and electroabsorption modulators,” Proceedings of OFC 2000.
[3] F. Delorme, G. Alibert, C. Ougier, S. Slemples and H. Nakajima, “Sampled grating DBR lasers with 101 wavelengths over 44 nm and optimized power variation for WDM application, ” IEEE Electron Lett., vol. 34, pp. 279-281, 1998.
[4] H.Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers”, IEEE Journal of Appl. physics, vol. 43, no. 5, pp.2327-2335, 1972.
[5] A. Yariv and M. Nakamura, “Periodic structures for integrated optics” IEEE Journal of Quantum Electron, vol. 13, no. 4, pp. 233-253, 1977.
[6] G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers, Van Nostrand Reinhold, New York, pp. 184, 1986.
[7] A. C. Beer and R. K. Willardson, Semiconductors and Semimetals, Chapter 4. V. 22, Part B, Academic Press, New York, 1985.
[8] H. H. Yee, H. T. Hsu, J. Y. Chang and P. C. Chen, “New self-consistent method for determining the coupling coefficient and the grating losses of DBR lasers using matlab,” Proceedings of SPIE, pp. 103-113, Boston, USA, November, 2000.
[9] H. H. Yee, S. Ayling and R. M. De La Rue “Surfae-gating distributed Bragg reflector quantum-well lasers fabricated in AlGaAs-GaAs asymmetric epitaxial waveguides,” IEEE Journal of Appl. physics, vol. 38, no. 30, October, 1999.
[10] Larry A. Coldren and Scott W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Interscience, 1995.
[11] S. L. Woodward, I. M. I. Habbab, T. L. Koch “The side-mode-suppression ratio of a tunable DBR laser”, IEEE Photonics Tech. Lett., V. 2, No. 12, pp. 854-856 , Koren , 1990.
[12] F. S. Choa, W. T. Tsang, R. A. Logan, R P Gnall, U Koren, T L Koch, C A Burrus, M C Wu, Y K Chen, P F Sciortino, A M Sergent and P J Corvini, “Very high sidemode-suppressin-ratio distributed-bragg-reflector lasers grown by chemical beam epitaxy”, Electron. Lett., V. 28, No. 11, pp. 1001-1002 , 1992.
[13] A. Yariv and P. Yeh, Optical Waves in Crystal, New York: Wily, 1984.
[14] V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design and performance of extended tuning range semiconductor lasers with sampled gratings, ” IEEE J. Quantum Electron., vol. 29, pp. 1824-1834, 1993.

第五章
[1] G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers, Van Nostrand Reinhold, New York, 1986.
[2] Gerd Keiser, Optical Fiber Communacations, McGrawHill, Singapore, 2000.
[3] Pallab Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall, Lodon.
[4] C. E. Zah, R. Bhat, and T. P. Lee, “High temperature operation of AlGaInAs/InP lasers,” Proc. 7th Int. Conf. Inp Related Mat., Japan, 1995, pp. 14-17.
[5] Jen-Wei Pan and Jen-Inn Chyi, “Theoretical study of the temperature dependence of 1.3 μm AlGaInAs-InP multiple quantum well lasers,” IEEE Journal of Quantum Electronics, vol.32, no.12, pp2133-2138, 1996.
[6] P. S. Zory, Jr., Ed., Quantum Well Lasers, Orlando, FL: Academic, 1993.
[7] G. Fuchs, C. Schiedel, A. Hangleiter, V. Harle, and F. Scholz, “Auger recombination in strained and unstrained InGaAs/InGaAsP multiple quantum-well lasers,” Appl. Phys. Lett., vol.62, no.4, pp396-398, 1993.
[8] M. Asda, A. Kameyama, and Y. Suematsu, “Gain and intervalence band absorption in quantum-well lasers,” IEEE J. Quantum Electron., vol.QE-20, pp745-753, 1984.
[9] C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High performance uncooled 1.3 μm strained layer quantum well lasers for sub scriber loop applications,” IEEE J. Quantum Electron., vol.QE-20, pp745-753, 1984.
[10] E. Yablonovitch and E. O. Kane, “Band structure engineering of semiconductor lasers for optical communications,” IEEE J. Lightwave Technol., vol.6, pp1292-1299, 1988.

[11] A. Ghiti, M. Silver, and E. P. O’Reilly, “Low threshold current and high differential gain in ideal tensile and compressive strained quantum well lasers,” J. Appl. Phys., vol.71, no.9, pp4626-4628, 1992.
[12] Toshio Higashi, Stephen J. Sweeney, Alistair F. Phillips, Alfred R. Adams, Eoin P. O’Reilly, Tpru Uchida, and Takuya Fujii, “Experimental analysis of temperature dependence in 1.3 μm AlGaInAs-InP strained MQW lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol.5, no.3, pp413-419, 1999.
[13] C.Ougier, A.Talneau, F.Delorme, S.Slempkes, D.Mathoorasing, “High number of wavelength channels demonstrated by a widely tunable sampled-grating DBR laser,” IEE Proc.-Optoelectron, vol.143, no.1, pp77-80, 1996.
[14] Larry A. Coldren and Scott W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Interscience, 1995.
[15] Larry A. Coldren and Scott W. Corzine, “Continuously-tunable single-frenquency semiconductor lasers,” IEEE Journal of Quantum Electronics, vol.QE-23, no.6, pp903-908, 1987.
[16] F. Delorme, “Widely tunable 1.55 μm lasers for wavelength division multiplexed optical fiber communications, ” IEEE J. Quantum Electron., vol. 34, pp. 1706-1716, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊