跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 10:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉健輝
研究生(外文):Chien-Hui Yeh
論文名稱:液化地盤樁基之靜力分析模式研究
論文名稱(外文):Study on Static Modeling of Pile Foundation in Liquefied Soils
指導教授:張德文張德文引用關係
指導教授(外文):Der-Wen Chang
學位類別:碩士
校院名稱:淡江大學
系所名稱:土木工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:94
語文別:中文
論文頁數:173
中文關鍵詞:液化樁基側潰LSPILE破壞
外文關鍵詞:liquefactionpile foundationlateral spreadingLSPILEfailure
相關次數:
  • 被引用被引用:7
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以日本道路協會(JRA)與Tokimatsu建議之方法,模擬液化地盤下樁基礎受側潰流動影響之靜態反應。研究採溫氏基礎模式進行分析,並以有限差分法和矩陣技巧求解,藉Fortran程式語言開發LSPILE程式為分析工具。另利用閉迴式割線法模擬土壤與樁體之非線性行為,以了解側潰地盤下樁基礎之變形行為與破壞機制。研究結論如下:(1)JRA法所建議之土壓力模式與Tokimatsu法所建議之地盤變位模式皆可合理地估計基樁之變形與內力分佈狀況,JRA法參數選取較Tokimatsu法簡易且明確,但Tokimatsu法較為保守。(2)針對未液化底層土壤之處理模式,本研究建議將Ishihara土壓力模式納入考量,以取代傳統完全束制之模擬方式。(3)液化土層中樁基結構系統之破壞模式將同時與彎矩和剪力破壞有關,樁頂束制條件亦有影響。(4)樁體行為受液化土層和其上方非液化土層厚度影響至為明顯,故分析者須切實掌握液化潛能評估分析結果以避免分析誤差。(5)研究所得樁體最大位移量將發生於樁頂,而最大彎矩將發生於非液化與液化土層交界處;該項模擬可適用於液化所引致近地表土層流動時對樁基所產生之影響。
This study following the methodology suggested by JRA and Tokimatsu, is to study the pseudo-static pile behavior under the liquefaction. It applies the programming language of Fortran to exploit the analysis of LSPILE. The research result is essentially founded on the model of wrinkler’s foundation. The difference equations and the matrix technique are used to solve the problem. With the employment of closed-form linear solution to model the nonlinear soil-foundation behavior, this study aims to examine the deformation and destruction of the pile foundation. Five research results are derived in this conclusion: First, both of the lateral earth pressure recommended by JRA and the subgrade reaction method by Tokimatsu can evaluate the deformation and distribution of the bending moment and shear force of pile foundation precisely. And that the parameters derived from the JRA method is more precise and definite than that of the Tokimatsu, but relatively JRA method is conservative for Tokimatsu method. Second, this study suggests adopting Ishihara’s theory of lateral earth pressure, in replace of the traditional fixed head, into consideration in order to access non-liquefiable and based layer. Third, the occurrence of failure type of the liquefiable layer’s pile foundation is found affected by the bending moment, shear force, and boundary condition. Four, the study shows that pile behaviors are mostly affected by thickness of the liquefiable layer as well as the non-liquefiable layer above it. Hence researcher should be make clear command on the evaluation of soil liquefaction. Five, the result of this study shows that the maximum deformation is at the pile head, while the maximum bending moment is on the border between liquefiable and non-liquefiable layers. Such simulation is applicable to study the influences on pile foundation by the floating of surface layer caused by liquefaction.
目 錄
中文摘要 一
英文摘要 二
本文目錄 I
表目錄 IV
圖目錄 IV
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法與內容 2
第二章 研究背景 4
2-1 前言 4
2-2 土壤液化發生之機制與影響因素 6
2-2-1 土壤液化之定義 6
2-2-2 土壤液化之機制 8
2-2-3 土壤液化之影響因素 9
2-3 液化損壞型態 14
2-4 液化潛能評估方法 17
2-4-1 簡單準則評估法 17
2-4-2 簡易經驗評估法 20
2-4-3 總應力分析法 27
2-4-4 有效應力分析法 28
2-5 土壤液化之簡易模擬 29
2-5-1 靜態土壓力法 31
2-5-2 地盤反力分析法 34
2-6 彈性基礎梁分析模式 37
2-7 樁基礎非線性行為模擬 39
2-7-1 API建議之p-y曲線法 39
2-7-2 樁體之撓曲剛度特性 46
2-8 基礎之破壞機制檢核 49
2-9 樁基礎耐震之動力分析 55
2-9-1 波動方程於樁基礎地震反應之發展 55
2-9-2 地震下樁基之波動方程分析 59
第三章 理論推導與方法 65
3-1 前言 65
3-2 公式建立與推導 66
3-3 採用JRA法之分析模式 73
3-3-1 液化底層土壤之分析模式 73
3-3-2 樁體與土壤非線性處理模式 75
3-4 採用Tokimatsu法之分析模式 77
3-4-1 液化土壤之分析模式 78
3-4-2 樁體與土壤非線性處理模式 80
3-5 程式建構與應用 83
3-6 分析模式比較 85
3-6-1 分析模式比較之案例介紹 85
3-6-2 分析模式比較結果 88
3-6-3 參數研究 96
第四章 案例研究 102
4-1 前言 102
4-2 案例一 日本新潟NHK大樓 103
4-3 案例二 日本神戶TANK TA72 114
4-4 案例三 日本神戶Pier211 130

第五章 結論與建議 146
5-1 結論 146
5-2 展望與建議 148
參考文獻 149
附錄 161


表 目 錄

表2-1 初步研判土層液化潛能之參數 19
表2-2 液化潛能指數分級與災害示意表(摘自 Iwasaki et al., 1982) 24
表2-3 日本道路協會規範(1990)之土質參數折減係數DE 26
表2-4 日本道路協會規範(1996)之土質參數折減係數DE 26
表2-5 日本建築學會規範(1998)之土質參數折減係數DE 26
表2-6 依離水際線距離變化之修正係數cS 33
表2-7 非液化土層中流動力之修正係數cNL 33
表2-8 不同稠度黏土 之代表值(摘自 Reese, 1983)
41
表3-1 LSPILE程式之輸入檔參數 83
表3-2 LSPILE之副程式功能 84
表3-3 土壤的基本性質(假設土層) 87
表3-4 樁基礎之基本參數性質(假設基礎) 87
表3-5 底層土壤彈簧模數對樁身位移之影響(JRA法) 89
表3-6 底層土壤彈簧模數對樁身位移之影響(Tokimatsu法) 89
表4-1 土壤之基本材料參數(摘自 林三賢等人,2005) 104
表4-2 樁基之基本參數性質(摘自 林三賢等人,2005) 104
表4-3 人工回填島之土壤參數表(TANK TA72) 115
表4-4 基樁材料性質參數(TANK TA72) 115
表4-5 現地土壤參數表(Pier 211) 131
表4-6 基樁材料性質參數(Pier 211) 131

圖 目 錄

圖1-1 研究分析流程圖 3
圖2-1 飽和沙土不排水試驗液化潛能狀態示意圖
( 重繪自Castro, 1669 ) 9
圖2-2 邊坡滑動破壞示意圖 15
圖2-3 結構體常見的損壞型態 16
圖2-4 土壤液化評估方法分類(重繪自 翁作新等人, 2004) 18
圖2-5 美國液化評估簡易法之發展概要(重繪自 翁作新等人, 2004) 21
圖2-6 日本液化評估簡易法之發展概要(重繪自 翁作新等人, 2004) 22
圖2-7 中國大陸液化評估簡易法之發展概要
( 重繪自 翁作新等人, 2004 ) 22
圖2-8 液化土層中樁-土-結構互制示意圖
(重繪自 Tokimatsu and Asaka, 1998) 30
圖2-9 水底高程差及離水際線的距離(摘自 JRA, 1996) 31
圖2-10 流動力之計算模式(摘自 JRA, 1996) 33
圖2-11 地震時之最大反覆剪應變(摘自 Tokimatsu and Asaka, 1998) 35
圖2-12 側潰範圍與河岸線水平位移關係圖
(摘自 Tokimatsu and Asaka, 1998) 36
圖2-13 海岸距離與地盤水平位移關係
(摘自 Tokimatsu and Asaka, 1998) 36
圖2-14 樁基礎側向荷載之溫氏基礎模式
(摘自 Prakash and Sharma, 1990) 38
圖2-15 Matlock(1970)建議之軟弱黏土p-y曲線(摘自 Reese, 1983) 41
圖2-16 Reese and Welch(1975)建議之硬黏土p-y曲線
(摘自 Reese, 1983) 42
圖2-17 O’Neill et al.(1984)建議之砂土p-y曲線關係圖 44
圖2-18 砂土之初始彈性模數(摘自API, 1993) 45
圖2-19 樁體彎曲特性三線型模式(摘自 JRA, 2002) 48
圖2-20 樁體彎曲特性雙線型模式(摘自 JRA, 2002) 48
圖2-21 箍筋圍束下混凝土應力與應變模式(摘自 Kent and Park, 1971) 49
圖2-22 慣性矩I II對彎矩-轉角關係的影響(摘自 楊宗勳,2000) 52
圖2-23 基樁之有效長度概念(重繪自Bhattacharya et al., 2004) 54
圖2-24 樁體破壞試驗結果(摘自Knappett and Madabhushi, 2005) 54
圖2-25 受地震加速度擾動之SDOF系統 60
圖2-26 間接分析法示意圖 60
圖2-27 地盤轉換理論分析法模型示意圖 61
圖2-28 地盤轉換函數分析流程圖 62
圖2-29 自由場集中質量分解模擬示意圖 63
圖2-30 樁基結構系統受震分割示意圖 64
圖3-1 樁頂之節點編號 67
圖3-2 樁頂內一點之節點編號 67
圖3-3 樁底之節點編號 67
圖3-4 樁底內一點之節點編號 67
圖3-5 樁頂邊界條件(自由端) 69
圖3-6 樁頂邊界條件(剛性端) 70
圖3-7 JRA法-底層地盤完全束制分析模式示意圖 74
圖3-8 JRA法-底層地盤採Ishihara and Cubrinovski(2004)建議之分析模式示意圖 74
圖3-9 採JRA法之非線性分析流程 76
圖3-10 樁基礎利用p-y曲線簡化之擬靜態法分析示意圖
(重繪自 Tokimatsu and Asaka, 1998) 77
圖3-11 Tokimatsu法-底層地盤完全束制分析模式示意圖 79
圖3-12 Tokimatsu法-底層地盤採Ishihara and Cubrinovski(2004)建議之分析模式示意圖 79
圖3-13 採Tokimatsu法之非線性分析流程 82
圖3-14 基樁與地盤之情境模式 86
圖3-15 混凝土樁之彎矩-曲率圖(假設基礎) 86
圖3-16 JRA法之樁體變位、彎矩、剪力圖
(基樁為線性,底層地盤完全束制) 90
圖3-17 Tokimatsu法之樁體變位、彎矩、剪力圖
(基樁為線性,底層地盤完全束制) 91
圖3-18 JRA法之樁體變位、彎矩、剪力圖
(基樁為線性,底層地盤採Ishihara and Cubrinovski之建議) 92
圖3-19 Tokimatsu法之樁體變位、彎矩、剪力圖
(基樁為線性,底層地盤採Ishihara and Cubrinovski之建議) 93
圖3-20 JRA法之樁體變位、彎矩、剪力圖
(基樁為非線性,底層地盤採Ishihara and Cubrinovski之建議) 94
圖3-21 Tokimatsu法之樁體變位、彎矩、剪力圖
(基樁為非線性,底層地盤採Ishihara and Cubrinovski之建議) 95
圖3-22 假設樁長為40公尺所得之位移、彎矩、剪力分佈圖(JRA法) 97
圖3-23 假設樁長為40公尺所得之位移、彎矩、剪力分佈圖
(Tokimatsu法) 97
圖3-24 假設液化土層厚度為4公尺所得之位移、彎矩、剪力分佈圖
(JRA法) 98
圖3-25 假設液化土層厚度為4公尺所得之位移、彎矩、剪力分佈圖(Tokimatsu法) 98
圖3-26 假設非液化土層厚度為1公尺所得之位移、彎矩、剪力分佈圖(JRA法) 100
圖3-27 假設非液化土層厚度為1公尺所得之位移、彎矩、剪力分佈圖(Tokimatsu法) 100
圖3-28 假設流動化範圍之內摩擦角為28度所得之位移、彎矩、剪力分佈圖(JRA法) 101
圖3-29 假設流動化範圍之內摩擦角為28度所得之位移、彎矩、剪力
分佈圖(Tokimatsu法) 101
圖4-1 液化後新潟地區永久位移量分佈圖 105
圖4-2 現場調查斷樁破壞示意圖(NHK Building) 105
圖4-3 樁基礎破壞模式及簡化分析模式(NHK Building) 106
圖4-4 混凝土基樁彎矩-曲率之關係圖(NHK Building)
(摘自 林三賢等人,2005) 106
圖4-5 樁身位移與彎矩分佈圖(摘自 Meyersohn, 1994) 107
圖4-6 樁身位移與彎矩分佈圖(摘自 林三賢等人,2005) 107
圖4-7 抗液化安全係數與孔隙水壓力比分佈圖(NHK Building) 108
圖4-8 樁身位移剖面分佈圖(NHK Building) 110
圖4-9 樁身彎矩剖面分佈圖(NHK Building) 111
圖4-10 樁身剪力剖面分佈圖(NHK Building) 112
圖4-11 位移與彎矩分佈比較圖(NHK Building) 113
圖4-12 Mikagehama Island地理位置圖(摘自 Ishihara, 2003) 116
圖4-13 人工島上儲油槽Tank TA72位置示意圖
(摘自 Ishihara and Cubrinovski, 2004) 116
圖4-14 儲油槽結構剖面與土層分佈概況
(摘自 Ishihara and Cubrinovski, 2004) 117
圖4-15 液化地盤之簡化分析模式(TANK TA72) 118
圖4-16 高強度預鑄混凝土樁之彎矩-曲率圖
(摘自 Ishihara and Cubrinovski, 2004) 118
圖4-17 No.2(a)與No.9(b)基樁之側向位移及樁身損害示意圖 119
圖4-18 樁身位移分佈圖(摘自 Ishihara and Cubrinovski, 2004) 120
圖4-19 樁身彎矩分佈圖(摘自 Ishihara and Cubrinovski, 2004) 120
圖4-20 抗液化安全係數與孔隙水壓力比分佈圖(TANK TA72) 121
圖4-21 JRA法之樁身位移剖面分佈圖(TANK TA72) 123
圖4-22 JRA法之樁身彎矩剖面分佈圖(TANK TA72) 124
圖4-23 JRA法之樁身剪力剖面分佈圖(TANK TA72) 125
圖4-24 Tokimatsu法之樁身位移剖面分佈圖(TANK TA72) 126
圖4-25 Tokimatsu法之樁身彎矩剖面分佈圖(TANK TA72) 127
圖4-26 Tokimatsu法之樁身剪力剖面分佈圖(TANK TA72) 128
圖4-27 位移與彎矩分佈比較圖(TANK TA72) 129
圖4-28 Osaka與Kobe之高速公路系統圖(摘自 Ishihara, 2003) 132
圖4-29 地層高低輪廓示意圖(摘自 Ishihara, 2003) 132
圖4-30 Hanshin公路破壞示意圖 133
圖4-31 地表永久變位圖(摘自 Ishihara, 2003) 133
圖4-32 碼頭結構與樁基系統示意圖(摘自 Ishihara, 2003) 134
圖4-33 Pier 211之樁基彎矩與曲率關係圖(摘自 Ishihara, 2003) 135
圖4-34 樁基損害示意圖(摘自 Ishihara, 2003) 135
圖4-35 樁身位移與彎矩分佈曲線(摘自 Ishihara, 2003) 136
圖4-36 抗液化安全係數與孔隙水壓力比分佈圖(Pier 211) 137
圖4-37 JRA法之樁身位移剖面分佈圖(Pier 211) 139
圖4-38 JRA法之樁身彎矩剖面分佈圖(Pier 211) 140
圖4-39 JRA法之樁身剪力剖面分佈圖(Pier 211) 141
圖4-40 Tokimatsu法之樁身位移剖面分佈圖(Pier 211) 142
圖4-41 Tokimatsu法之樁身彎矩剖面分佈圖(Pier 211) 143
圖4-42 Tokimatsu法之樁身剪力剖面分佈圖(Pier 211) 144
圖4-43 位移與彎矩分佈比較圖(Pier 211) 145
1.Abdoun, T. and Dobry, R. (2002), “Evaluation of Pile Foundation Response to Lateral Spreading,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp.1051-1058.
2.ACI Committee 318 (1995), “Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (ACI 318R-95),” American Concrete Institute.
3.API (1993), “Recommended Practice for Planning, Design, and Constructing Fixed Offshore Platforms,” API RP 2A-WSD, 20th ed., American Petroleum Institute.
4.Arulanadan, K., Li, X.S. and Sivathasan, K. (2000), “Numerical Simulation of Liquefaction-induced Deformations, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 7, pp. 657-666.
5.Berrill, J.B., Christensen, S.A., Keenan, R.P., Okada, W., and Pettinga, J.R. (2001), “Case Study of Lateral Spreading Forces on a Piled Foundation,” Geotechnique, Vol. 51, No. 6, pp.501-517.
6.Bhattacharya, S., Madabhushi, S. and Bolton, M.D. (2004), “An Alternative Mechanism of Pile Failure in Liquefiable Deposits During Earthquakes,” Geotechnique, Vol. 54, No. 3, pp.203-213.
7.Borms, B.B. (1964), “Lateral Resistance of Piles in Cohesionless Soils,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. 3, pp.123-156.
8.Borms, B.B. (1964), “Lateral Resistance of Piles in Cohesive Soils,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. 2, pp.27-63.
9.Casagrande, A. (1936), “Characteristics of Cohesionless Soils Affecting Stability of Slopes and Earth Fills,” Journal of the Boston Society of Civil Engineers, January; reprinted in Contributions to Soil Mechanics, BSCE, 1940, pp.257-276.
10.Castro, G. (1969), “Liquefaction of Sands,” PhD. Thesis, Harvard University; reprinted as Harvard Soil Mechanics Series, No.81, 112 pp.
11.Castro, G. and Poulos, S.J. (1977), “Factors Affecting Liquefaction and Cyclic Mobility,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp.501-516.
12.Chang, D. W. and Yeh, S. H. (1999), “Time-Domain Wave Equation analysis of single Piles Utilizing Transformed Radiation Damping,” Soils and foundations, JGS. , Vol. 39, No. 2, pp.31-44.
13.Chang, D. W., Roesset, J .M. and Wen, C. H. (2000), “A Time-Domain Viscous Damping Model Based on Frequency-Depend Damping Ratios,” Soil Dynamic and Earthquake Engineering, Vol. 19, pp.551-558.
14.Chang, Y.L. (1937), “Discussion on Lateral Pile-Loading Tests,” by Feagin, Trans. ASCE, Paper No. 1959, pp. 272-278.
15.Chung, K.Y.C. and Wong, I.H. (1982), “Liquefaction Potential of Soils with Plastic Fines,” Soil Dynamics and Earthquake Engineering Conference, Southampton, pp.887-897.
16.Dobry, R. and Gazetas, G. (1988), “Simple Method for Dynamic Stiffness and Damping of Floating Pile Groups,” Geotechnique, Vol. 38, No. 4, pp.557-574.
17.Dobry, R., Abdount, T., O’Rourke, T.D. and Goh, S.H. (2003), “Single Piles in Lateral Spreads Field Bending Moment Evaluation,” Journal of the Geotechnical Engineering, ASCE, Vol. 129, No. 10, pp.879-889.
18.Finn, W.D.L. (1982), “Soil Liquefaction Studies in the People’s Republic of China,” Soil Mechanics-Transient and Cyclic Loads, Ch. 22, pp.609-626, John Wiley & Sons, Ltd.
19.Guo, T. and Prakash, S. (2000), “Liquefaction Silt-Clay Mixtures,” Proc. 11th World Conf. On Earthquake Engg Auckland NZ, CD Rom.
20.Haigh S.K. and Madabhushi S.P.G. (2005), “The Effects of Pile Flexibility on Pile-Loading in Laterally Spreading Slops,” Proc. Int. Workshop Simulation and Seismic Performance of Pile Foundations in Liquefied and Laterally Spreading Ground, ASCE, 14 p.
21.Hamada M. (1992), “Large Ground Deformations and Their Effects on Lifelines:1964 Niigata Earthquake,” in Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Vol. 1, Japanese Case Studies, Technical Report NCEER-92-0001, NCCER, Buffalo, NY, USA. 3.1-3.123.
22.Hetenyi, (1991), “Beams on Elastic Foundation,” University of Michigan Press.
23.Ishibashi, I.M., Sherlif, M.A. and Cheng, W.L. (1982), “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp.37-48.
24.Ishihara, K. (1993), “Liquefaction and Flow Failure During Earthquakes,” Geotechnique, Vol. 43, No. 3, pp.351-415.
25.Ishihara, K. (2003), “Liquefaction-Induced Lateral Flow and Its Effects on Foundation Piles,” 5th National Conference on Earthquake, Istanbul, Turkey, 28 p.
26.Ishihara, K. and Cubrinovski M. (2004), “Case Studies of Pile Foundations Undergoing Lateral Spreading in Liquefied Deposits,” Proc. 5th International Confernce on Case Histories in Geotechnical Engineering, New York, Paper SOAP5.
27.Iwasaki, T., Arakawa, T., and Tokida, K. (1982), “Simplified Procedures for Assessing Soil Liquefaction During Earthquakes,” Soils Dynamics and Earthquake Engineering Conference, Southamption, pp.925-939.
28.Kent, D.C, and Park, R. (1971), “Flexural Member with Confined Concrete,” Journal of the Structural Division, ASCE, Vol. 97, No. 7, pp. 1969-1990.
29.Lee, K.L., and Fitton, J.A. (1969), “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquake on Soils the Foundations, ASTM STP450, pp.71-96.
30.Li, X.S., Wang Z.L. and Shen, C.K. (1992), “SUMDES, a Nonlinear Procedure for Response Analysis of Horizontal-Layer Sites Subjected to Multi-Directional Earthquake Loading”, Report to the Department of Civil Engineering University of California, Davis.
31.Liang, R.W., Bai, X. H., and Wang J. C. (2000), “Effect of Clay Particle Content on Liquefaction of Soil,” Proceedings, 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
32.MacGregor, J.G. (1988), “Reinforced Concrete: Mechanics and Design,” Prentice Hall, New Jersey, U.S.A.
33.Madabhushi, S.P.G. and Zeng, X. (1998), “Seismic Response of Gravity Quay Walls Ⅱ: Numerical Modeling”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 5, pp. 418-427.
34.Matlock, H. (1970), “Correlations for Design of Laterally Loaded in Soft Clay,” Proceedings of the 2nd Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp.577-594.
35.Matlock, H. and Reese, L.C. (1960), “Generalized Solution for Laterally Loaded Piles,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 86, No. SM5, pp.1220-1246.
36.Moriwaki, Y., Tan, P., and Choi, Y. (2005), “Nonlinear Analyses for Design of Piles in Liquefying Soils at Port Facilities”, Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.
37.Mulilis, J.P. (1975), “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC 75-18, U. C. Berkeley Earthquake Engineering Research Center.
38.Novak, M. (1974), “Dynamic Stiffness and Damping of Piles,” Journal of Canadian Geotechnical Engineering, Vol. 11, pp.574-598.
39.Novak, M. (1977), “Vertical Vibration of Floating Piles,” Journal of Engineering Mecanics Division, ASCE, Vol. 103(EM-1), pp.153-168.
40.Novak, M. and Beredugo, Y.O. (1972), “Vertical Vibration of Embedded Footings,” Journal of Soil Mechanics and Foundation Division., ASCE, Vol. 98, pp.1291-1310.
41.Novak, M. and EI Sharnouby, B. (1983), “Stiffness and Damping Constants of Single piles,” Journal of Geotechnical Engineering Division, ASCE, Vol. 109, No. GT7, pp.153-168.
42.O’Neill, M.W. and Murchison, J.M. (1983), “An Evaluation of P-Y in Sands,” Research Report No.GT-DF02-83, Department of Civil Engineering, University of Houston, Houston, Texas.
43.Park, S. and Byme, P.M. (2005), “Multi-plane Model for Soil Liquefaction”, Geo-Frontiers 2005, ASCE, pp. 2577-2592.
44.Poulos, H.G. (1989), “Cyclic Axial Loading Analysis of Piles in Sand,” Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 6, pp.836-852.
45.Reese, L.C. (1983), “Executive Summary, Behavior of Piles and Pile Groups Under Lateral Load,” U.S. Department of Transportation Federal Highway Administration Office of Research Washington, D. C. 444 pp.
46.Reese, L.C. and Welch, R.C. (1975), “Lateral Loading of Deep Foundations in Stiff Clay,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT7, pp.633-649.
47.Reese, L.C., and Van Impe, W.F. (2001), “Single Piles and Pile Groups under Lateral Loading,” A.A. Balkema.
48.Reese, L.C., Cox, W.R., and Koop, F.D. (1975), “Field Testing and Analysis of Laterally Loaded Piles in Stiff Clay,” Proceedings of the 7th Annual Offshore Technology Conference, Houston, Texas, Vol. 2, Paper No. OTC 2312, pp.672-690.
49.Santos, J.A.D., and Correia, A.G. (1995), “Analysis of Lateral Loading Piles Behavior Using Small Computers,” Proceeding Practice and Promotion of Computational Methods in Engineering Using Small Computers, Macao, pp.1353-1358.
50.Schnabel, P.B., Lysmer, J., and Seed, H.B. (1972), “SHAKE: a Computer Program for Earthquake Response Analysis of Horizontally Layered Sites”, Report No. EERC 72-12, Earthquake Engineering Research Center, University of California, Berkeley.
51.Seed, H.B. and Idriss, I.M. (1971), “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp.1249-1274.
52.Seed, H.B. and Idriss, I.M. (1976), “Analysis of Soil Liquefaction: Niigata Earthquake,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM3, Proc. Paper 4233.
53.Seed, H.B. and Idriss, I.M. (1982), “Ground Motions and Soil Liquefaction During Earthquakes,” Earthquake Engineering Research Institute, Berkeley, AC, USA.
54.Seed, H.B. and Peacock, W.H. (1971), “Test Procedure for Measuring Soil Liquifaction Characteristics,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp.1099-1119.
55.Seed, H.B., (1979) “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquake,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp.201-255.
56.Seed, H.B., Martin, P.P., and Lysmer, J. (1975), “The Generation and Dissipation of Pore Water Pressure During Soil Liquefaction,” Report No. EERC 75-26, Earthquake Research Center, University of California, Berkeley, California.
57.Seed, H.B., Mori, K., and Chan, C.K. (1975), “Influence of Seismic History on the Liquefaction Characteristics of Sands, ” Report No. EERC 75-25, Earthquake Research Center, University of California, Berkeley, California.
58.Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M. (1985), ”Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 111, No. 12, pp.1425-1445.
59.Shen, C.K., Vrymoed J.L. and Uyeno C.K. (1977), “The Effects of Fines on Liquefaction of Sands,” Proceeding of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp.381-385.
60.Smith, E.A.L. (1960), “Pile Driving Analysis by The Wave Equation,” Journal of Soil Mechanics and Foundation Divisions, ASCE, Vol. 86, No. SM4, pp.35-61.
61.Stevens, J.B. and Audibert, J.M.E. (1979), “Re-Examination of P-Y Curve Formulations,” Proceedings of 11th Annual Offshore Technology Conference, Houston, Texas, No. OTC 3402, pp.397-403.
62.Stoke, K.H., Roesset, J.M., Bierschwale, J.G. and Aouad, M. (1988), “Liquefaction Potential of Sand from Shear Wave Velocity”, Proceedings, 9th World Conference on Earthquake Engineering, Tokyo, Vol. 3, pp. 213-218.
63.Terzaghi, K. (1955), “Evaluation of Coefficients of Subgrade Reaction,” Geotechnique, Vol. 5, pp.297-326.
64.Tokimatsu, K. (2003), “Behavior and Design of Pile Foundations Subjected to Earthquakes,” Proceedings of the 12th ARC on Soil Mechanics and Geotechnical Engineering, Vol II, pp. 1065-1096.
65.Tokimatsu, K. and Asaka, Y. (1998), “Effects of Liquefaction Induced Ground Displacement on Pile Performance in the 1995 Hyogoken–Nambu Earthquake,” Special Issue of Soils and Foundations, No. 2, pp.163-178.
66.Tokimatsu, K. and Yoshimi, Y. (1983), “Empirical Correlation of Soil Liquefaction Based on SPT N-value and Fines Content,” Soils and Foundations, JSSMFE, Vol. 23, No. 4, pp.56-74.
67.Tokimatsu, K., Suzuki, H. and Sato, M. (2005), “Effects of Inertial and Kinematic Interaction on Seismic Behavior of Pile with Embedded Foundation,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp.753-762.
68.Xia H. and Hu T. (1991), “Effects of Saturation and Back Pressure on Sand Liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol. 117.
69.日本國鐵基礎構造物及抗土壓構造物設計標準研究委員會 (1986),“國鐵建造物設計標準同解說-基礎構造物及抗土壓構造物”。
70.日本道路協會 (1990),「道路橋示方書•同解說,V耐震設計編」。
71.日本道路協會 (1996),「道路橋示方書•同解說,V耐震設計編」。
72.日本道路協會 (2002),「道路橋示方書•同解說,V耐震設計編」。
73.吳宗達 (2003),“樁基波動方程分析之視窗化研究與應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
74.吳偉特,(1979) “台灣地區砂性土壤液化潛能評估之初步分析”,中國土木水利季刊,第六卷,第二期,第39-70頁。
75.李佳翰 (2001),“沈箱式碼頭受震引致土壤液化之數值模擬”,碩士論文,中央大學應用地質研究所,台灣,中壢。
76.林三賢、曾玉如、江承家、李維峰(2005),“液化土層產生側潰對基樁之影響分析”,地工技術,第103期,第43-52頁。
77.林光宗 (1998),“群樁互制效應對基樁反應之影響”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
78.林成川 (2002),“921集集大地震霧峰地區土壤側潰”,碩士論文,中興大學土木工程研究所,台灣,台中。
79.林伯勳 (2002),“群樁受垂直向及側向載重之非線性變形研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
80.林冠吾 (2003),“層狀土壤中之樁基承載力及變形行為”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
81.邱俊翔 (2001),“基樁側向荷載行為之研究”,博士論文,國立台灣大學土木工程研究所,台灣,台北。
82.邱建銘 (2000),“以剪力波速評估員林地區液化及其地層動態反應研究”,碩士論文,台灣大學土木工程研究所,台灣,台北。
83.翁作新、陳正興、黃俊鴻 (2004),“國內土壤受震液化問題之檢討” 地工技術,第100期,第63-78頁。
84.翁贊鈞 (2003),“員林地區傾斜地盤二維有效應力分析”,碩士論文,台灣大學土木工程研究所,台灣,台北。
85.馬志睿 (2001),“沈箱式碼頭受震反應之數值模擬”,碩士論文,中央大學土木工程研究所,台灣,中壢。
86.張一郎 (2000),“波動方程式分析於群樁側向反應之應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
87.陳正興 (2000),“側向荷重樁之非線性反應分析”,國立台灣大學土木工程系研究報告。
88.黃俊鴻 (2000),“液化地盤中樁基礎之耐震設計”,地工技術,第82期,第65-78頁。
89.黃筱卿 (2002),“員林地區土壤液化之地盤反應分析”,碩士論文,台灣大學土木工程研究所,台灣,台北。
90.楊宗勳 (2000),“地震力對混凝土樁之影響分析” ,碩士論文,國立海洋大學河海工程研究所,台灣,基隆。
91.溫展華 (2000),“垂直群樁反應數值解比較研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
92.賈志揚 (2004),“樁基波動方程分析網際網路化視窗程式之開發”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
93.劉祉祥 (1999),“垂直載重群樁之波動方程式時域解”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
94.鄭世豪 (2004),“簡易橋墩基礎之地震反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
95.蘇順帆 (2001),“群樁基礎互制行為研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top