1.Abdoun, T. and Dobry, R. (2002), “Evaluation of Pile Foundation Response to Lateral Spreading,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp.1051-1058.
2.ACI Committee 318 (1995), “Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (ACI 318R-95),” American Concrete Institute.
3.API (1993), “Recommended Practice for Planning, Design, and Constructing Fixed Offshore Platforms,” API RP 2A-WSD, 20th ed., American Petroleum Institute.
4.Arulanadan, K., Li, X.S. and Sivathasan, K. (2000), “Numerical Simulation of Liquefaction-induced Deformations, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 7, pp. 657-666.
5.Berrill, J.B., Christensen, S.A., Keenan, R.P., Okada, W., and Pettinga, J.R. (2001), “Case Study of Lateral Spreading Forces on a Piled Foundation,” Geotechnique, Vol. 51, No. 6, pp.501-517.
6.Bhattacharya, S., Madabhushi, S. and Bolton, M.D. (2004), “An Alternative Mechanism of Pile Failure in Liquefiable Deposits During Earthquakes,” Geotechnique, Vol. 54, No. 3, pp.203-213.
7.Borms, B.B. (1964), “Lateral Resistance of Piles in Cohesionless Soils,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. 3, pp.123-156.
8.Borms, B.B. (1964), “Lateral Resistance of Piles in Cohesive Soils,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. 2, pp.27-63.
9.Casagrande, A. (1936), “Characteristics of Cohesionless Soils Affecting Stability of Slopes and Earth Fills,” Journal of the Boston Society of Civil Engineers, January; reprinted in Contributions to Soil Mechanics, BSCE, 1940, pp.257-276.
10.Castro, G. (1969), “Liquefaction of Sands,” PhD. Thesis, Harvard University; reprinted as Harvard Soil Mechanics Series, No.81, 112 pp.
11.Castro, G. and Poulos, S.J. (1977), “Factors Affecting Liquefaction and Cyclic Mobility,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp.501-516.
12.Chang, D. W. and Yeh, S. H. (1999), “Time-Domain Wave Equation analysis of single Piles Utilizing Transformed Radiation Damping,” Soils and foundations, JGS. , Vol. 39, No. 2, pp.31-44.
13.Chang, D. W., Roesset, J .M. and Wen, C. H. (2000), “A Time-Domain Viscous Damping Model Based on Frequency-Depend Damping Ratios,” Soil Dynamic and Earthquake Engineering, Vol. 19, pp.551-558.
14.Chang, Y.L. (1937), “Discussion on Lateral Pile-Loading Tests,” by Feagin, Trans. ASCE, Paper No. 1959, pp. 272-278.
15.Chung, K.Y.C. and Wong, I.H. (1982), “Liquefaction Potential of Soils with Plastic Fines,” Soil Dynamics and Earthquake Engineering Conference, Southampton, pp.887-897.
16.Dobry, R. and Gazetas, G. (1988), “Simple Method for Dynamic Stiffness and Damping of Floating Pile Groups,” Geotechnique, Vol. 38, No. 4, pp.557-574.
17.Dobry, R., Abdount, T., O’Rourke, T.D. and Goh, S.H. (2003), “Single Piles in Lateral Spreads Field Bending Moment Evaluation,” Journal of the Geotechnical Engineering, ASCE, Vol. 129, No. 10, pp.879-889.
18.Finn, W.D.L. (1982), “Soil Liquefaction Studies in the People’s Republic of China,” Soil Mechanics-Transient and Cyclic Loads, Ch. 22, pp.609-626, John Wiley & Sons, Ltd.
19.Guo, T. and Prakash, S. (2000), “Liquefaction Silt-Clay Mixtures,” Proc. 11th World Conf. On Earthquake Engg Auckland NZ, CD Rom.
20.Haigh S.K. and Madabhushi S.P.G. (2005), “The Effects of Pile Flexibility on Pile-Loading in Laterally Spreading Slops,” Proc. Int. Workshop Simulation and Seismic Performance of Pile Foundations in Liquefied and Laterally Spreading Ground, ASCE, 14 p.
21.Hamada M. (1992), “Large Ground Deformations and Their Effects on Lifelines:1964 Niigata Earthquake,” in Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Vol. 1, Japanese Case Studies, Technical Report NCEER-92-0001, NCCER, Buffalo, NY, USA. 3.1-3.123.
22.Hetenyi, (1991), “Beams on Elastic Foundation,” University of Michigan Press.
23.Ishibashi, I.M., Sherlif, M.A. and Cheng, W.L. (1982), “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp.37-48.
24.Ishihara, K. (1993), “Liquefaction and Flow Failure During Earthquakes,” Geotechnique, Vol. 43, No. 3, pp.351-415.
25.Ishihara, K. (2003), “Liquefaction-Induced Lateral Flow and Its Effects on Foundation Piles,” 5th National Conference on Earthquake, Istanbul, Turkey, 28 p.
26.Ishihara, K. and Cubrinovski M. (2004), “Case Studies of Pile Foundations Undergoing Lateral Spreading in Liquefied Deposits,” Proc. 5th International Confernce on Case Histories in Geotechnical Engineering, New York, Paper SOAP5.
27.Iwasaki, T., Arakawa, T., and Tokida, K. (1982), “Simplified Procedures for Assessing Soil Liquefaction During Earthquakes,” Soils Dynamics and Earthquake Engineering Conference, Southamption, pp.925-939.
28.Kent, D.C, and Park, R. (1971), “Flexural Member with Confined Concrete,” Journal of the Structural Division, ASCE, Vol. 97, No. 7, pp. 1969-1990.
29.Lee, K.L., and Fitton, J.A. (1969), “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquake on Soils the Foundations, ASTM STP450, pp.71-96.
30.Li, X.S., Wang Z.L. and Shen, C.K. (1992), “SUMDES, a Nonlinear Procedure for Response Analysis of Horizontal-Layer Sites Subjected to Multi-Directional Earthquake Loading”, Report to the Department of Civil Engineering University of California, Davis.
31.Liang, R.W., Bai, X. H., and Wang J. C. (2000), “Effect of Clay Particle Content on Liquefaction of Soil,” Proceedings, 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
32.MacGregor, J.G. (1988), “Reinforced Concrete: Mechanics and Design,” Prentice Hall, New Jersey, U.S.A.
33.Madabhushi, S.P.G. and Zeng, X. (1998), “Seismic Response of Gravity Quay Walls Ⅱ: Numerical Modeling”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 5, pp. 418-427.
34.Matlock, H. (1970), “Correlations for Design of Laterally Loaded in Soft Clay,” Proceedings of the 2nd Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp.577-594.
35.Matlock, H. and Reese, L.C. (1960), “Generalized Solution for Laterally Loaded Piles,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 86, No. SM5, pp.1220-1246.
36.Moriwaki, Y., Tan, P., and Choi, Y. (2005), “Nonlinear Analyses for Design of Piles in Liquefying Soils at Port Facilities”, Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.
37.Mulilis, J.P. (1975), “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC 75-18, U. C. Berkeley Earthquake Engineering Research Center.
38.Novak, M. (1974), “Dynamic Stiffness and Damping of Piles,” Journal of Canadian Geotechnical Engineering, Vol. 11, pp.574-598.
39.Novak, M. (1977), “Vertical Vibration of Floating Piles,” Journal of Engineering Mecanics Division, ASCE, Vol. 103(EM-1), pp.153-168.
40.Novak, M. and Beredugo, Y.O. (1972), “Vertical Vibration of Embedded Footings,” Journal of Soil Mechanics and Foundation Division., ASCE, Vol. 98, pp.1291-1310.
41.Novak, M. and EI Sharnouby, B. (1983), “Stiffness and Damping Constants of Single piles,” Journal of Geotechnical Engineering Division, ASCE, Vol. 109, No. GT7, pp.153-168.
42.O’Neill, M.W. and Murchison, J.M. (1983), “An Evaluation of P-Y in Sands,” Research Report No.GT-DF02-83, Department of Civil Engineering, University of Houston, Houston, Texas.
43.Park, S. and Byme, P.M. (2005), “Multi-plane Model for Soil Liquefaction”, Geo-Frontiers 2005, ASCE, pp. 2577-2592.
44.Poulos, H.G. (1989), “Cyclic Axial Loading Analysis of Piles in Sand,” Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 6, pp.836-852.
45.Reese, L.C. (1983), “Executive Summary, Behavior of Piles and Pile Groups Under Lateral Load,” U.S. Department of Transportation Federal Highway Administration Office of Research Washington, D. C. 444 pp.
46.Reese, L.C. and Welch, R.C. (1975), “Lateral Loading of Deep Foundations in Stiff Clay,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT7, pp.633-649.
47.Reese, L.C., and Van Impe, W.F. (2001), “Single Piles and Pile Groups under Lateral Loading,” A.A. Balkema.
48.Reese, L.C., Cox, W.R., and Koop, F.D. (1975), “Field Testing and Analysis of Laterally Loaded Piles in Stiff Clay,” Proceedings of the 7th Annual Offshore Technology Conference, Houston, Texas, Vol. 2, Paper No. OTC 2312, pp.672-690.
49.Santos, J.A.D., and Correia, A.G. (1995), “Analysis of Lateral Loading Piles Behavior Using Small Computers,” Proceeding Practice and Promotion of Computational Methods in Engineering Using Small Computers, Macao, pp.1353-1358.
50.Schnabel, P.B., Lysmer, J., and Seed, H.B. (1972), “SHAKE: a Computer Program for Earthquake Response Analysis of Horizontally Layered Sites”, Report No. EERC 72-12, Earthquake Engineering Research Center, University of California, Berkeley.
51.Seed, H.B. and Idriss, I.M. (1971), “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp.1249-1274.
52.Seed, H.B. and Idriss, I.M. (1976), “Analysis of Soil Liquefaction: Niigata Earthquake,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM3, Proc. Paper 4233.
53.Seed, H.B. and Idriss, I.M. (1982), “Ground Motions and Soil Liquefaction During Earthquakes,” Earthquake Engineering Research Institute, Berkeley, AC, USA.
54.Seed, H.B. and Peacock, W.H. (1971), “Test Procedure for Measuring Soil Liquifaction Characteristics,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp.1099-1119.
55.Seed, H.B., (1979) “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquake,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp.201-255.
56.Seed, H.B., Martin, P.P., and Lysmer, J. (1975), “The Generation and Dissipation of Pore Water Pressure During Soil Liquefaction,” Report No. EERC 75-26, Earthquake Research Center, University of California, Berkeley, California.
57.Seed, H.B., Mori, K., and Chan, C.K. (1975), “Influence of Seismic History on the Liquefaction Characteristics of Sands, ” Report No. EERC 75-25, Earthquake Research Center, University of California, Berkeley, California.
58.Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M. (1985), ”Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 111, No. 12, pp.1425-1445.
59.Shen, C.K., Vrymoed J.L. and Uyeno C.K. (1977), “The Effects of Fines on Liquefaction of Sands,” Proceeding of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp.381-385.
60.Smith, E.A.L. (1960), “Pile Driving Analysis by The Wave Equation,” Journal of Soil Mechanics and Foundation Divisions, ASCE, Vol. 86, No. SM4, pp.35-61.
61.Stevens, J.B. and Audibert, J.M.E. (1979), “Re-Examination of P-Y Curve Formulations,” Proceedings of 11th Annual Offshore Technology Conference, Houston, Texas, No. OTC 3402, pp.397-403.
62.Stoke, K.H., Roesset, J.M., Bierschwale, J.G. and Aouad, M. (1988), “Liquefaction Potential of Sand from Shear Wave Velocity”, Proceedings, 9th World Conference on Earthquake Engineering, Tokyo, Vol. 3, pp. 213-218.
63.Terzaghi, K. (1955), “Evaluation of Coefficients of Subgrade Reaction,” Geotechnique, Vol. 5, pp.297-326.
64.Tokimatsu, K. (2003), “Behavior and Design of Pile Foundations Subjected to Earthquakes,” Proceedings of the 12th ARC on Soil Mechanics and Geotechnical Engineering, Vol II, pp. 1065-1096.
65.Tokimatsu, K. and Asaka, Y. (1998), “Effects of Liquefaction Induced Ground Displacement on Pile Performance in the 1995 Hyogoken–Nambu Earthquake,” Special Issue of Soils and Foundations, No. 2, pp.163-178.
66.Tokimatsu, K. and Yoshimi, Y. (1983), “Empirical Correlation of Soil Liquefaction Based on SPT N-value and Fines Content,” Soils and Foundations, JSSMFE, Vol. 23, No. 4, pp.56-74.
67.Tokimatsu, K., Suzuki, H. and Sato, M. (2005), “Effects of Inertial and Kinematic Interaction on Seismic Behavior of Pile with Embedded Foundation,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp.753-762.
68.Xia H. and Hu T. (1991), “Effects of Saturation and Back Pressure on Sand Liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol. 117.
69.日本國鐵基礎構造物及抗土壓構造物設計標準研究委員會 (1986),“國鐵建造物設計標準同解說-基礎構造物及抗土壓構造物”。
70.日本道路協會 (1990),「道路橋示方書•同解說,V耐震設計編」。
71.日本道路協會 (1996),「道路橋示方書•同解說,V耐震設計編」。
72.日本道路協會 (2002),「道路橋示方書•同解說,V耐震設計編」。
73.吳宗達 (2003),“樁基波動方程分析之視窗化研究與應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。74.吳偉特,(1979) “台灣地區砂性土壤液化潛能評估之初步分析”,中國土木水利季刊,第六卷,第二期,第39-70頁。75.李佳翰 (2001),“沈箱式碼頭受震引致土壤液化之數值模擬”,碩士論文,中央大學應用地質研究所,台灣,中壢。76.林三賢、曾玉如、江承家、李維峰(2005),“液化土層產生側潰對基樁之影響分析”,地工技術,第103期,第43-52頁。77.林光宗 (1998),“群樁互制效應對基樁反應之影響”,碩士論文,淡江大學土木工程研究所,台灣,淡水。78.林成川 (2002),“921集集大地震霧峰地區土壤側潰”,碩士論文,中興大學土木工程研究所,台灣,台中。79.林伯勳 (2002),“群樁受垂直向及側向載重之非線性變形研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。80.林冠吾 (2003),“層狀土壤中之樁基承載力及變形行為”,碩士論文,淡江大學土木工程研究所,台灣,淡水。81.邱俊翔 (2001),“基樁側向荷載行為之研究”,博士論文,國立台灣大學土木工程研究所,台灣,台北。82.邱建銘 (2000),“以剪力波速評估員林地區液化及其地層動態反應研究”,碩士論文,台灣大學土木工程研究所,台灣,台北。83.翁作新、陳正興、黃俊鴻 (2004),“國內土壤受震液化問題之檢討” 地工技術,第100期,第63-78頁。84.翁贊鈞 (2003),“員林地區傾斜地盤二維有效應力分析”,碩士論文,台灣大學土木工程研究所,台灣,台北。85.馬志睿 (2001),“沈箱式碼頭受震反應之數值模擬”,碩士論文,中央大學土木工程研究所,台灣,中壢。86.張一郎 (2000),“波動方程式分析於群樁側向反應之應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。87.陳正興 (2000),“側向荷重樁之非線性反應分析”,國立台灣大學土木工程系研究報告。
88.黃俊鴻 (2000),“液化地盤中樁基礎之耐震設計”,地工技術,第82期,第65-78頁。89.黃筱卿 (2002),“員林地區土壤液化之地盤反應分析”,碩士論文,台灣大學土木工程研究所,台灣,台北。90.楊宗勳 (2000),“地震力對混凝土樁之影響分析” ,碩士論文,國立海洋大學河海工程研究所,台灣,基隆。91.溫展華 (2000),“垂直群樁反應數值解比較研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。92.賈志揚 (2004),“樁基波動方程分析網際網路化視窗程式之開發”,碩士論文,淡江大學土木工程研究所,台灣,淡水。93.劉祉祥 (1999),“垂直載重群樁之波動方程式時域解”,碩士論文,淡江大學土木工程研究所,台灣,淡水。94.鄭世豪 (2004),“簡易橋墩基礎之地震反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。95.蘇順帆 (2001),“群樁基礎互制行為研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。