|
Amenomiya, Y. and T. Tagawa,“ Infrared study of methanol synthesis from CO2+H2 on supported copper-zinc oxide catalysts,” Proc. 8th Int. Congr. Catalysis Berlin, 2, 557-567, 1984.
Basile, A., L. Parurzo and F. Gallucci,“ An experimental study of CO2 hydrogenation into methanol involving a zeolite membrane reactor,” Chem. Eng. Pro., 43, 1029-1036, 2004.
Basile, A., L. Parurzo and F. Lagana,“ The partial oxidation of methane to syngas in a palladium membrane reactor: simulation and experiment studies,” Catal. Today, 67, 65-75, 2001.
Deb, K., A. Patap, S. Agarwal and T. Meyarivan,“ A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ,“ IEEE. Tran. Evol. Comput., 6, 182-197, 2002.
De Groote, A. M. and G. F. Froment,“ Simulation of the catalytic partial oxidation of methane to synthesis gas,” App. Catal. A: Gen., 138, 245-264, 1996.
Freni, S., G. Calogero and S. Cavallaro,“ Hydrogen production from methane through catalytic partial oxidation reactors,” J. Power Sources, 87, 28-38, 2000.
Farrauto, R. J. and C. H. Bartholomew,” Fundamentals of industrial catalutic process,” AIChE J., 340-347, 2006.
Graaf, G. H., H. Scholtens and E. J. Stamhuis,“ Intra-particle diffusion limiotations in low-pressure methanol synthesis,” Chem. Eng. Sci., 45, 773-783, 1990.
Graaf, G. H., E. J. Stamhuis and A. A. C. M. Beenackers,“ Kinetics of low-pressure methanol synthesis,” Chem. Eng. Sci., 43, 3185-3195, 1988.
Graaf, H. G., B. J. Lommerts and A. A. C. M. Beenackers,” Mathematical modeling of internal mass transport limitations in methanol synthesis,” Chem. Eng. Sci., 55, 5589-5598, 2000. Haryanto, A., S. Fernando, N. Murali and S. Adhikari,“ Current Stats of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review,” Energy and Fuels, 19, 2098-2106, 2005.
Inamdar, S. V., S. K. Gupta and D. N. Saraf,“ Multi-objective optimization of an industrial crude distillation unit using the elitist nondominated sorting genetic algorithm,“ Chem. Eng. Res. Des., 82, 611-623, 2004.
Ji, P., H. J. van de Kooi and J. S. de Arons,“ Simulation and thermodynamic analysis of an integrated process with H2 membrane CPO reactor for pure H2 production,” Chem. Eng. Sci., 58, 3901-3911, 2003.
Jin, W., X.Gu, S.Li, P. Huang, N. Xu and J. Shi,“ Experiment and Simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane,” Chem. Eng. Sci., 55, 2617-2625, 2000.
Ji, P., H. J. van de Kooi and J. S. de Arons,“ Comparison of Three Integrated Catalytic Partial Oxidation (CPO) Processes Producing H2 for Fuel Cell Application,” Ind. Eng .Chem. Res., 43, 2005-2016, 2004.
Kasat, B. R., D. Kunzru, D. N. Saraf and S. K. Gupta,“ Multiobjective optimization of industrial FCC units using elitist nondominated sorting genetic algorithm,” Ind. Eng. Chem. Res., 41, 4765-4776, 2002.
Kameyama, T., M. Dokiya, M. Fujishige, H. Yokokawa and K. Fikuda,“ Possibility for effect production of hydrogen from hydrogen sulfide by means of a porous vycor glass membrane,” Ind. Eng .Chem. Fund., 20, 97-99, 1981.
Noble, R. D. and S. A. Sterm, “Membrane separations technology principle and applications,” Mem. Sci. & Tech. Ser, 2, 1995.
Oh, P. P., G. P. Rangaiah and A. K. Ray,“ Simulation and multiobjective optimization of an industrial hydrogen plant based on refinery off-gas,” Ind. Eng. Chem. Res., 41, 2248-2261, 2002.
Ostrowski, T., A. Giroir-Fendler, C. Mirodatos and L. Mleczko, “ Comparative study of the catalytic partial oxidation of methane to synthesis gas in fixed-bed and fluidized-bed membrane reactors,” PartⅠ: A modeling approach, Catal. Today, 40, 181-190, 1998.
Ostrowski, T., A. Giroir-Fendler, C. Mirodatos and L. Mleczko, “Comparative study of the catalytic partial oxidation of methane to synthesis gas in fixed-bed and fluidized-bed membrane reactors,” PartⅡ: Development of membranes and catalytic measurements, Catal. Today, 40, 191-200, 1998.
Papoulis, A. and Unnikrishna Pillai, S.,” Probability, random variables, and stochastic processes,” 4th ed., McGraw-Hill, New York, NY, 2002.
Rajesh, J. K., S. K. Gupta, G. P. Rangaiah and A. K. Ray,“ Multiobjective optimization of steam reformer performance using genetic alogorithm,” Ind. Eng. Chem. Res., 39, 706-717, 2000.
Regnier, J., B. Sareni and X. Roboam,” System optimization by multiobjective genetic algorithms and analysis o the coupling between variables, constraints and objectives,” International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 24, 805-820, 2005.
Rosen, M. A.,“ Thermodynamic investigation of hydrogen production by steam-methane reforming,” Int. J. Hyd. Ene., 16, 207-217, 1991.
Smet, C. R. H. de, M. H. J. M. de Croon, R. J. Berger, G. B. Marin and F. C. Schouten,“ Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells,” Chem. Eng. Sci., 56, 4849-4861, 2001.
Srinivas, N. and K. Deb,“ Mutiobjective optimization using nondominated sorting in genetic algorithms,” Evol. Comput., 2, 221-248, 1995.
Struis, R. P. W. J. and S. Stucki,” Verification of the membrane reactor concept for the methanol synthesis,” App. Catal. A: Gen., 216, 117-129, 2001. Struis, R. P. W. J., S. Stucki and M. Wiedorn,“ A membrane reactor for methanol synthesis,” J. Mem. Sci., 113, 93-100, 1996.
Skrzypek, J., M. Lachowska and D. Serafin,“ Methanol synthesis from co2 and h2: dependence of equilibrium conversions and exit equilibrium concentrations of components on the main process variables,” Chem. Eng. Sci., 45, 89-96, 1990.
Struis, R. P. W. J., M. Quintilii and S. Stucki,“ Feasibility of Li-Nafion hollow fiber membranes in methanol synthesis: mechanical and thermal stability at elevated temperature and pressure,” J. Mem. Sci., 177, 215-223, 2000.
Tarafder, A., B. C. S. Lee, A. K. Ray and G. P. Rangaiah,“ Multiobjective optimization of an industrial ethylene reactor using a nondominated sorting genetic algorithm,“ Ind. Eng. Chem. Res., 44, 124-141, 2005.
Villadsen, J. and M. Michelsen,“ Solution of different equations models by polynomials approximation,” Englewood Cliffs, NJ: Prentice-Hall, 1978.
Xu, J. and G. F. Froment,“ Methane steam reforming, methanation and water gas shift: Ⅰ. Intrinsic kinetics,” AIChE J., 35, 88-96, 1989.
Xu, J. and G. F. Froment,“ Methane steam reforming : Ⅱ. Diffusional limitations and reactor simulation,” AIChE J., 35, 97-103, 1989.
|