跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王昭舜
研究生(外文):Jau-Shuenn Wang
論文名稱:嗒肼衍生物及其銥錯合物之合成與電化學和光物理性質研究
論文名稱(外文):Synthesis, Electrochemical and Photophysical Properties of Pyridazine Derivatives and Tris-cyclometalated Iridium(III) Complexes
指導教授:王文竹
指導教授(外文):Wen-Jwu Wang
學位類別:博士
校院名稱:淡江大學
系所名稱:化學學系博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:240
中文關鍵詞:銥錯合物磷光推拉電子基孔洞狀結構氫鍵
外文關鍵詞:pyridazinetris-cyclometalatedIridiumphosphorescenceMLCThypsochromicbathochromicπ-π stackingtetrazinepyridazineoxadiazole
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們合成一系列雙取代芳香環之雜環分子,3,6-disubstituted-1,2,4,5-tetrazine與3,6-disubstituted-pyridazine,及其銥金屬錯合物,Ir(Rdppa)3 (Rdppa = di(R''-phenyl)pyridazine, R''=2-Cl, 3-Cl, 4-Cl, 3-Br, 4-Me)與Ir(pdppa)3 (pdppa = 3,4,6-triphenylpyridazine),此系列分子活化苯環離去氫原子,與銥(III)金屬離子反應形成triscyclometalated中性化合物。由X-ray的單晶結構可知錯合物的構形為trans-Ir(dppa)3,其未鍵結金屬之苯環與相鄰分子之未鍵結苯環具有π-πstacking作用力,使得分子向不同方向延伸堆疊具高對稱性。錯合物的電子吸收光譜具有配位子之π-π*、1MLCT以及屬於自旋禁阻3MLCT之電子躍遷,錯合物具有不錯的磷光放射,其放光波長介於533 nm( Ir(4Cldppa)3 )至575 nm( Ir(pdppa)3 )間,此系列配位基之LUMO能階分佈於較缺電子的pyridazine環上,而HOMO能階則分佈於電子密度較高的芳香環上,藉由對苯環作拉電子基的修飾將降低HOMO能階,發現放光波長產生藍位移,而弱推電子基(-CH3)對放射波長的影響並不明顯,芳香環的修飾降低LUMO能階,使得放光波長紅位移了20 nm。錯合物吸收光譜與放射光譜之stokes shift值均小於100 nm,因此推測這一系列銥錯合物之磷光放射主要源自於3MLCT激發態所貢獻。錯合物的激發態生命期介於0.91 µs( Ir(3Brdppa)3 )至2.9 µs( Ir(4Medppa)3 )間,量子產率最高為Ir(4Cldppa)3之0.429,最低為Ir(dppa)3之0.069。錯合物均具有一可逆的氧化還原峰,苯環有拉電子基的取代,將有效地提高其氧化電位,推電子基之取代則發現其氧化電位降低,由於錯合物之氧化發生於銥中心金屬與苯環間,是故在pyridazine環上苯環的修飾對錯合物的氧化電位並無明顯的影響。放光波長的紅藍位移趨勢取決於淨能隙的變化,當拉電子基的取代,使得HOMO下降的程度大於LUMO,將造成淨能隙增加而使放光波長產生藍位移。由3,6-disubstituted-1,2,4,5-tetrazine衍生得一系列新的H形結構分子,1,4-bis(3,6-di-R"-pyridazin-4-yl)benzene (R"= phenyl、3-chlorophenyl與3-bromophenyl),X-ray的單晶結構發現1,4-bis(3,6-diphenylpyridazin-4-yl)-benzene分子間具有π-π stacking作用力使得分子交錯堆疊形成孔狀結構,孔徑約6.3 Å x 6.9 Å。3,6-bis(2-hydroxyphenyl)-1,2,4,5-tetrazine (H2boptz)、3,6-bis(2-hydroxyphenyl)pyridazine (H2boppa)與3,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole (H2bopoa)為新的一系列具有雙苯酚取代之雜環分子,兩苯酚之OH與中間雜環之氮原子均具有氫鍵作用力,使得分子之去質子化較為不易,H2boptz之pKa值為12.7。
The photophysical property of tris-cyclometalated complexes of Ir(III) make them useful for several photonic applications. The attraction of these complexes for such applications comes from their long excited-state lifetime and high luminescent efficiencies. The Synthesis, structure, electrochemistry, and photophysics of the tris-cyclometalated Ir(III) complexes are reported. Reaction of the Ir(acetylacetonate)3 with 3,6-disubstituted-pyridazine (Rdppa, 3,6-di(R’-phenyl)pyridazine, R’=2-Cl, 3Cl, 4-Cl, 3-Br, 4-Me) and 3,4,6-triphenylpyridazine (pdppa) ligands forms the present compounds. The Ir-C and Ir-N bonds with trans configuration is observed for the phenylpyridazine-based complexes. The compounds have intense absorption bands in the UV region assigned into π-π* transitions and a weaker MLCT transition that extend to the visible region. The tris-cyclometalated Ir(III) complexes exhibit intense emission at room temperature, with emission characteristic of phosphorescence from a 3MLCT triplet state. The complexes show reversible reduction-oxidation process. The substitution of electron-withdrawing group at phenyl ring resulted in the hypsochromic shift in the emission wavelength since lower HOMO. Electronegative nitrogen and enlarging the π-conjugation exert bathochromic shift on the emission wavelength since lower LUMO.
A microporous material constructed by π-π interaction of a twisted H-shape poly-aromatic molecule, 1,4-bis(3,6-diphenylpyridazin-4-yl)benzene was synthesized by the reaction of 1,4-diacetylbenzene and 3,6-diphenyl-1,2,4,5tetrazine. The intermolecular distances between the various aromatic rings are within the range of 3.4~3.7 Å which indicate the intermolecular π-π stacking interaction. Hexagonal channels with pore width 6.3 Å x 6.9 Å along the c axis were observed. Interstitial water and MeOH molecules were located within each porous channel.
3,6-disubstituted-1,2,4,5-tetrazine moieties have become popular as efficient electronic spacers in dinuclear and polynuclear systems, due to the fact that the tetrazine-based low-lying π* orbital conveys strong π-accepting characteristics, leading to excellent electronic communication between the metal termini. A serial of diphenolate ligands, 3,6-bis(2-hydroxyphenyl)-1,2,4,5-tetrazine (H2boptz), 3,6-bis(2-hydroxyphenyl) pyridazine (H2boppa) and 3,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole (H2bopoa) were synthesized and characterized, and the ligand H2boptz contain phenolate donors and a central tetrazine π-acceptor function. The pKa value of H2boptz is 12.7.
目 錄
中文摘要
英文摘要
目錄………………………………………………...I
圖目錄…………………………………………..III
表目錄……………………………………………...VI
第一章 緒論………………..…………………….1
1-1. d6族金屬錯合物之光物理特性……….1
1-2. 螢光與磷光………………………………1
1-3. 發光d6族金屬錯合物之進展…………4
1-4. 銥金屬錯合物之發展背景……………...5
1-5. 研究動機…………………………..27
第二章 合成與結構……………..……...28
2-1. 配位子之合成………………….28
2-2. 銥錯合物之合成………………..33
2-3. 錯合物之結構………………...36
第三章 光物理性質…………………………..42
3-1. 溶液態吸收與放射光譜………………...42
3-2. 固態放射光譜……………………………53
3-3. 量子產率……………………………...55
第四章 電化學性質……………..60
第五章 雙酚取代tetrazine、pyridazine與oxadiazole分子…65
5-1. 緒論………………………...65
5-2. 合成方法與討論…………….……….66
5-3. X-ray單晶結構…………………….70
5-4. 光物理性質……………….………...75
5-5. 酸鹼性質…………………...76
第六章 孔洞結構分子1,4-bis(3,6-
diphenylpyridazin-4-yl)benzene及其衍生物……...79
6-1. 緒論……………………………………79
6-2. 化合物之合成…………………………..80
6-3. X-ray單晶結構…………………………81
6-4. 1,4-bis(3,6-diphenylpyridazin-
4-yl)benzene之衍生物……...83
6-5. 熱穩定性質探討………………………..86
第七章 實驗部分………………………………88
7-1. 試劑……………………………….88
7-2. 實驗步驟………………………….88
7-2-1. 配位基之合成………………………….88
7-2-2. 銥錯合物之合成…………………….94
7-3. 物理性質測定方法…………………….101
結論………………………………………………...104
參考文獻…………………………………..106
附錄………………………………115
圖 目 錄
圖1-1. 螢光(F)與磷光(P)簡圖………………………...2
圖1-2. 激發態電子去活化的形式………………………...3
圖1-3. ortho-metalated配位子ppy與bzq…………….…5
圖1-4. 銥雙體錯合物(C^N)2Ir(μ-Cl)Ir(C^N)2…………..6
圖1-5. tris-cyclometalated銥錯合物Ir(ppy)3之合成流程圖…6
圖1-6. 配位子hat及其銥錯合物……………………..7
圖1-7. MLCT與SBLCT電子轉移機制………………….8
圖1-8. fac-Ir(thpy)3結構圖…………………………9
圖1-9. 混配位子型銥錯合物…………………………...9
圖1-10. 混配位子型銥錯合物………………………...10
圖1-11. 不同官能基取代之tris-cyclometalated銥錯合物……11
圖1-12. 含fluorene官能基之銥錯合物…………………….12
圖1-13. thiophene與isoquinoline系列之
tris-cyclometalated銥錯合物…………………………...13
圖1-14. facial型與meridional型tris-cyclometalated銥錯合物….13
圖1-15. 含triazolyl pyridine銥錯合物之合成流程…………...14
圖1-16. 不同位置甲基修飾之tris-cyclometalated銥錯合物……16
圖1-17. 具quinoxaline之銥錯合物…………………………...17
圖1-18. Ir(ppy)3之修飾放光波長途徑………………….……...17
圖1-19. Ir(ppy)3之修飾與放光波長變化…………………...18
圖1-20. Ir(ppy)3之修飾與放光波長變化……………………...19
圖1-21. N-pyrazolyl與N-heterocyclic carbene系列銥錯合物…….20
圖1-22. a.錯合物Ir(ppz)3 (T1)與Ir(flz)3 (T1’)之輻射與非輻射能階b.carbene錯合物Ir(C^C:)3與Ir(ppz)3之非輻射能階相對關係…21
圖1-23. tris-cyclometalated之carbene銥錯合物…………...22
圖1-24. phenylpyrazolyl與diimine混配位子型
bis-cyclometalated銥錯合物…………………………...22
圖1-25. BlueJ、PVK、Ir(PBPP)3與Ir(PIQ)3之分子結構……….24
圖1-26. 雙核cyclometalated錯合物……………..……26
圖2-1. 配位基dppa之合成………………………….31
圖2-2. 配位基2Cldppa ~ 4Medppa之合成……………….32
圖2-3. 銥錯合物之合成………………………………….35
圖2-4. 錯合物fac-Ir(dppa)3之單晶結構………………...36
圖2-5. 錯合物Ir(dppa)3分子間之π-π stacking………38
圖2-6. 錯合物Ir(dppa)3之分子間堆疊……………………39
圖2-7. 錯合物Ir(dppa)3沿b軸之分子堆疊……………….39
圖2-8. 錯合物Ir(dppa)3沿c軸之分子堆疊………………..40
圖2-9. 錯合物fac-Ir(pdppa)3之單晶結構……………...…41
圖2-10. 錯合物Ir(pdppa)3之分子堆疊圖………………...41
圖3-1. 錯合物Ir(dppa)3與配位子dppa之UV/Vis吸收光譜圖…42
圖3-2. 錯合物Ir(dppa)3 ~ Ir(pdppa)3之UV/Vis吸收光譜……43
圖3-3. 錯合物Ir(dppa)3 ~ Ir(pdppa)3之放射光譜………….44
圖3-4. 錯合物fac-Ir(F2ppy)3相對於其它銥錯合物之放射光譜…45
圖3-5. fac-Ir(F3ppy)3與fac-Ir(F4ppy)3結構…………………46
圖3-6. 錯合物Ir(ppz)3與Ir(46dfppz)3結構………………47
圖3-7. 錯合物Ir(dppa)3之3MLCT吸收光譜與放射光譜……52
圖3-8. 錯合物Ir(dppa)3於不同激發波長之放射光譜……52
圖3-9. 銥錯合物之固態放射光譜………………………53
圖3-10. Ir(dppa)3與標準品[Ru(bpy)3](PF6)2
在氰甲烷溶劑中之吸收光譜…………………57
圖3-11. Ir(dppa)3與標準品[Ru(bpy)3](PF6)2
在氰甲烷溶劑中之放射光譜………………58
圖3-12. 錯合物Ir(dppa)3之激發態生命期…….58
圖4-1. 錯合物之循環伏安電位圖………………..62
圖4-2. 錯合物之HOMO-LUMO能階圖………………...63
圖5-1. 2-hydroxyphenyl衍生錯合物………………..66
圖5-2. 2-hydroxybenzonitrile與聯胺之反應流程圖………..66
圖5-3. H2boptz之單晶結構圖…………………………70
圖5-4. H2boppa之單晶結構圖………………………...71
圖5-5. H2bopoa (a)之單晶結構圖…………………...72
圖5-6. 2-(2,3-diaza-4-(2-hydroxyphenyl)buta-
1,3-dienyl)-phenol (b)之單晶結構圖……………….73
圖5-7. 2-hydroxy-N''-(propan-2-ylidene)benzohydrazide
(c) (左)與2-hydroxybenzaldehyde hydrazone
(d) (右)之單晶結構圖…...73
圖5-8. 3-(2-hydroxyphenyl)-5,6-
diphenyltriazine之單晶結構圖……...74
圖5-9. 3-(2-hydroxyphenyl)-5,6-
diphenyltriazine之堆疊圖…….……..74
圖5-10. H2boptz、H2boppa與H2bopoa之
UV/Vis吸收光譜圖………...75
圖5-11. 7.51x10-6 M之H2boptz以TBAOH滴定之UV-Vis光譜圖.…76
圖5-12. 7.51x10-6 M之H2boptz以TBAOH滴定之UV-Vis光譜圖….77
圖5-13. 354 nm與447nm吸收峰之log(Ai-A/A-Af)對pH值作圖…….78
圖6-1. 1,4-bis(3,6-diphenylpyridazin-4-yl)benzene之X-ray單晶結構..81
圖6-2. 1,4-bis(3,6-diphenylpyridazin
-4-yl)benzene之ORTEP圖及標號示意圖………………….81
圖6-3. 分子內環與環間之dihedral angle…………….82
圖6-4. 沿著a、b與c軸之分子堆疊…………………………82
圖6-5. 沿著c軸之分子堆疊Space-filling圖………...83
圖6-6. d3ClL與d3BrL之X-ray單晶結構……………..83
圖6-7. d3ClL與d3BrL之沿b軸分子堆疊………………84
圖6-8. d3ClL之沿b軸分子堆疊圖………………...85
圖6-9. d3BrL之沿b軸分子堆疊圖………………...86
圖6-10. 1,4-bis(3,6-diphenylpyridazin-4-
yl)benzene之熱重分析圖…..87
表 目 錄
表2-1. 錯合物Ir(dppa)3晶體之鍵長與鍵角數據………..37
表3-1. 錯合物之吸收與放光性質……………………….44
表3-2. 錯合物之溶液態與固態之放光性質…………...54
表3-3. 常見的螢光參考標準品………………………….56
表3-4. 錯合物之量子效率、生命期、輻射與
非輻射衰減速率常數….59
表4-1. 錯合物之氧化電位差、能量間隙、HOMO與LUMO能階……62
表5-1. H2boptz與H2boppa晶體之鍵長與鍵角數據…………………71
表5-2. 化合物之吸收與放光性質………………………….75
參考資料
(1)C. M. Che, H. L. Kwong, C. K. Poon, V. W. W. Yam, J. Chem. Soc., Dalton Trans. 1990, 3215-3219.
(2)(a) V. Balzani, F. Scandola, Supramolecular Photochemistry; Ellis Horwood: Chichester, U.K., 1991. (b) V. Balzani, A. Credi, F. Scandola, Transition Metals in Supramolecular Chemistry; Fabbrizzi, L., Poggi, A., Eds.; Kluwer: Dordrecht, The Netherlands, 1994, 1. (c) J-M Lehn, Supramolecular ChemistrysConcepts and Properties; VCH: Weinheim, Germany, 1995. (d) C. A. Bignozzi, J. R. Schoonover, F. Scandola, Prog. Inorg. Chem. 1997, 44, 1-11.
(3)(a) K. Kalyanasundaran, Coord. Chem. Rev. 1982, 46, 159-244. (b) K. F. Chin, K. K. Cheung, H. K. Yip, T. C. W. Mak, C. M. Che, J. Chem. Soc., Dalton Trans. 1995, 4, 657-665. (c) N. Sonoyama, O. Karasawa, Y. Kaizu, J. Chem. Soc., Faraday Trans. 1995, 91, 437-443. (d) L. Tan-Sien-Hee, A. K. D. Mesmaeker, J. Chem. Soc., Dalton Trans. 1994, 24, 3651-3658. (e) K. Kalyanasundaram, M. Gratzel, Coord. Chem. Rev. 1998, 177, 347-414.
(4)(a) M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151-154. (b) M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 1999, 75, 4-6. (c) M. E. Thompson, P. E. Burrows, S. R. Forrest, Cur. Opinion Solid State Mater. Sci. 1999, 4, 369-374.
(5)(a) P. A. Anderson, R. F. Anderson, M. Furue, P. C. Junk, F. R. Keene, B. T. Patterson, B. D. Yeomans, Inorg. Chem. 2000, 39, 2721-2728. (b) C. Li, M. Z. Hoffman, Inorg. Chem. 1998, 37, 830-832. (c) C. Berg-Brennan, P. Subramanian, M. Absi, C. Stern, J. T. Hupp, Inorg. Chem. 1996, 35, 3719-3722. (d) Y. Kawanishi, N. Kitamura, S. Tazuke, Inorg. Chem. 1989, 28, 2968-2975.
(6)P. Didier, I. Ortmans, A. Klrsch-De Mesmaeker, R. J. Watts, Inorg. Chem. 1993, 32, 5239-5245.
(7)(a) V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni, Chem. ReV. 1996, 96, 759-834. (b) J. R. Shaw, G. S. Sadler, W. F. Wacholtz, C. K. Ryu, R. H. Schmehl, New J. Chem. 1996, 20, 749-755.
(8)(a) A. P. Wilde, K. A. King, R. J. Watts, J. Phys. Chem. 1991, 95, 629-634. (b) S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc. 1984, 106, 6647-6653. (c) G. A. Crosby, J. Chim. Phys. 1967, 64, 160-165. (d) M. C. Columbo, A. Hauser, H. U. Gu¨del, Top. Curr. Chem. 1994, 171, 143-148.
(9)S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razaq, R. Kwong I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Inorg. Chem. 2001, 40, 1704-1711.
(10)S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc. 1984, 106, 6647-6653.
(11)M. Nonoyama, Bull. Chem. Soc. Jan. 1974, 47, 767-768.
(12)A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377-7387.
(13)S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2001, 123, 4304-4312.
(14)K. Dedeian, P. I. Djurovich, F. O. Garces, G. Carlson, R. J. Watts, Inorg. Chem. 1991, 30, 1685-1687.
(15)K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc. 1985, 107, 1431-1432.
(16)M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Gudel, Inorg. Chem. 1994, 33, 545-550.
(17)S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Inorg. Chem. 2001, 40, 1704-1711.
(18)S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2001, 123, 4304-4312.
(19)V. V. Grushin, N. Herron, D. D. LeCloux, W. J. Marshall, V. A. Petrov, Y. Wang, Chem. Commun. 2001, 1494-1495.
(20)J. C. Ostrowski, M. R. Robinson, A. J. Heeger, G. C. Bazan, Chem. Commun. 2002, 784-785.
(21)A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, J. Am. Chem. Soc. 2003, 125, 12971-12979.
(22)C. H. Yang, K. H. Fang, C. H. Chen, I. W. Sun, Chem. Commun. 2004, 2232-2233.
(23)A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377-7387.
(24)P. Coppo, E. A. Plummer, L. D. Cola, Chem. Commun. 2004, 1774-1775.
(25)S. Jung, Y. Kang, H. S. Kim, Y. H. Kim, C. L. Lee, J. J. Kim, S. K. Lee, S. K. Kwon, Eur. J. Inorg. Chem. 2004, 3415-3423.
(26)F. M. Hwang, H. Y. Chen, P. S. Chen, C. S. Liu, Y. Chi, C. F. Shu, F. I. Wu, P. T. Chou, S. M. Peng, G. H.g Lee, Inorg. Chem. 2005, 44, 1344-1353.
(27)M. A. Baldo, S. Lamansky, P. E. Burrow, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 1999, 75, 4-6.
(28)T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes, S. R. Forrest, Inorg. Chem. 2005, 44, 7992-8003.
(29)A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377-7387.
(30)J. Li, P. I. Djurovich, B. D. Alleyne, M. Yousufuddin, N. N. Ho, J. C. Thomas, J. C. Peter, R. Bau, M. E. Thompson, Inorg. Chem. 2005, 44, 1713-1727.
(31)P. B. Hitchcock, M. F. Lappert, P. Terreros, J. Organomet. Chem. 1982, 239, C26-C30.
(32)A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurovich, I. M. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem. 2005, 44, 8723-8732.
(33)T. H. Kim, H. K. Lee, O. O. Park, B. D. Chin, S. H. Lee, J. K. Kim, Adv. Funct. Mater. 2006, 16, 611-617.
(34)J. W. Slater, D. P. Lydon, N. W. Alcock, J. P. Rourke, Organometallics 2001, 20, 4418-4423.
(35)J. W. Slater, D. P. Lydon, J. P. Rourke, J. Organomet. Chem. 2002, 645, 246-255.
(36)W. A. Butte and F. H. Case, J. Org. Chem. 1961, 26, 4690-4692.
(37)J. F. Geldard, F. Lions, J. Org. Chem. 1965, 30, 318-319.
(38)J. Wu, H. Chen, W. H. Kwok, K. H. Lam, Z. Y. Zhou, C. H. Yeung, A. S. C. Chan, Tetrahedron Letters 2002, 41, 1539-1541.
(39)W. X. Hu, G. W. Rao, Y. Q. Sun, Bioorg. Med. Chem. Lett. 2004, 14, 1177-1181.
(40)M. O. Abdel-Rahman, M. A. Kira, M. N. Tolba, Tetrahedron Letters 1968, 35, 3871-3872.
(41)W. A. Butte, F. H. Case, J. Org. Chem. 1961, 26, 4690-4692.
(42)M. J. Haddadin, S. J. Firsan, B. S. Nader, J. Org. Chem. 1979, 44, 629-630.
(43)W. A. Butte and F. H. Case, J. Org. Chem. 1961, 26, 4690-4692.
(44)I. Charles, D. W. S. Latham, D. Hartley, A. W. Oxford, D. I. C. Scopes, J. Chem. Soc. Perkin Trans I, 1980, 1130-1146.
(45)A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377-7387.
(46)K. Dedeian, P. I. Djurovich, F. O. Garces, G. Carlson, R. J. Watts, Inorg. Chem. 1991, 30, 1685-1687.
(47)R. R. Das, C. L. Lee, J. J. Kim, Mat. Res. Soc. Symp. Proc. 2002, 708, BB3.39.1- BB3.39.1.
(48)S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Inorg. Chem. 2001, 40, 1704-1711.
(49)S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc. 1984, 106, 6647-6653.
(50)A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377-7387.
(51)S. Jung, Y. Kang, H. S. Kim, Y. Hi. Kim, C. L. Lee, J. J. Kim, S. K. Lee, and S. K. Kwon, Eur. J. Inorg. Chem. 2004, 3415-3423.
(52)S. Okada, K. Okinaka, H. Iwawaki, M. Furugori, M. Hashimoto, T. Mukaide, J. Kamatani, S. Igawa, A. Tsuboyama, T. Takiguchi, K. Ueno, Dalton Trans. 2005, 1583-1590.
(53)(a)V. V. Grushin, N. Herron, D. D. LeCloux, W. J. Marshall, V. A. Petrov, Y. Wang, J. Chem. Soc. Chem. Commun. 2001, 1494-1495. (b)P. Coppo, E. A. Plummer, L. De Cola, J. Chem. Soc. Chem. Commun. 2004, 1774-1775. (c) K. Dedeian, J. Shi, S. Nigel, E. Forsythe, D. Morton, Inorg. Chem. 2005, 44, 4445-4447.
(54)A. Tamayo, B. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377-7387.
(55)R. Ragni, E. A. Plummer, K. Brunner, J. W. Hofstraat, F. Babudri, G. M. Farinola, F. Naso, L. D. Cola, J. Mater. Chem. 2006, 16, 1611-1170.
(56)(a) M. G. Colombo, A. Hauser, H. U. Gudel, Inorg. Chem. 1993, 32, 3088-3092. (b) M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Gudel, Inorg. Chem. 1994, 33, 545-550.
(57)(a) S. Lamansky, P. Djurovich, D. Murphy, F. A. Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Inorg. Chem. 2001, 40, 1704-1711. (b) S. Lamansky, P. Djurovich, D. Murphy, F. A. Razzaq, H. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2001, 123, 4304-4312.
(58)U. Maeder, H. S. Evans, V. Zelewsky, Hev. Chim. Acta. 1992, 73, 1321-1327.
(59)(a) J. W. Pavlik, R. E. Connors, D. S. Burns, E. M. Kurzweil, J. Am. Chem. Soc. 1993, 115, 76457652. (b) C. Cativiela, J. I. G. Laureiro, J. Elguero, E. Elguero, Gazz. Chim. Ital. 1991, 121, 477. (c) C. Cativiela, J. I. G. Laureiro, J. Elguero, E. Elguero, Gazz. Chim. Ital. 1989, 119, 41. (d) C. Cativiela, J. I. G. Laureiro, J. Elguero, E. Elguero, Gazz. Chim. Ital. 1986, 116, 119.
(60)S. L. Murov, I. Carmichael, G. L. Hug, Handbook of Photochemistry Marcel Dekker, Inc.: New York, 1993.
(61)S. Lamansky, P. Djurovich, D. Murphy, F. A. Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2001, 123, 4304-4312.
(62)V. V. Grushin, N. Herron, D. D. LeCloux, W. J. Marshall, V. A. Petrov, Y. Wang, Chem. Commun. 2001, 1494-1495.
(63)S. Okada, K. Okinaka, H. Iwawaki, M. Furugori, M. Hashimoto, T. Mukaide, J. Kamatani, S. Igawa, A. Tsuboyama, T. Takiguchi, K. Ueno, Dalton Trans. 2005, 1583-1590.
(64)C. H. Yang, K. H. Fang, C. H. Chen, I. W. Sun, Chem. Commun. 2004, 2232-2233.
(65)S. Jung, Y. Kang, H. S. Kim, Y. H. Kim, C. L. Lee, J. J. Kim, S. K. Lee, S. K. Kwon, Eur. J. Inorg. Chem. 2004, 3415-3423.
(66)Y. H. Song, S. J. Yeh, C. T. Chen, Y. Chi, C. S. Liu, J. K. Yu, Y. H. Hu, P. T. Chou, S. M. Peng, G. H. Lee, Adv. Funct. Mater. 2004, 14, 1221-1226.
(67)M. B. Smith, Organic Synthesis; 2nd ed.; McGraw-Hill; New York, 2002, 143.
(68)M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Gudel, Inorg. Chem. 1994, 33, 545-550.
(69)J. M. Calvert, J. V. Caspar, R. A. Binstead, T. D.Westmoreland, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 6620-6627.
(70)S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 1460-1494.
(71)W. Kaim, Coord. Chem. Rev. 2002, 230, 126-138.
(72)N. M. Shavaleev, S. J. A. Pope, Z. R. Bell, S. Faulkner, M. D. Ward, Dalton Trans. 2003, 808-814.
(73)J. Poppe, M. Moscherosch, W. Kaim, Inorg. Chem. 1993, 32, 2640-2643.
(74)V. Kasack, W. Kaim, H. Binder, J. Jordanov, E. Roth, Inorg. Chem. 1995, 34, 1924-1933.
(75)S. Chellamma, M. Liebermann, Inorg. Chem. 2001, 40, 3177-3180.
(76)A. Singh, N. Singh, D. S. Pandey, J. Organomet. Chem. 2002, 642, 48-57.
(77)H. Tanaka, S. Tokito, Y. Taga, A. Okada, J. Mater. Chem. 1998, 8, 1999-2003.
(78)J. F. Wang, G. E. Jabbour, E. A. Mash, J. Anderson, Y. Zhang, P. A. Lee, Adv. Mater. 1999, 11, 1266-1269.
(79)N. X. Hu, M. Estenghamatian, S. Xie, Z. Popovic, A. M. Hor, B. Ong, S. Wang, Adv. Mater. 1999, 11, 1460-1463.
(80)S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 1460-1494.
(81)A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. A. Withersby, M. SchrTder, Coord. Chem. Rev. 1999, 183, 117-138.
(82)S. Kitagawa, S. Kawata, Coord. Chem. Rev. 2002, 224, 11-34.
(83)O. M. Yaghi, M. O''Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705-714.
(84)B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629-1658.
(85)H. Li, A. Laine, M. O''Keeffe, O. M. Yaghi, Science, 1999, 283, 1145-1147.
(86)Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. Xu, H. Zhang, D. Zhao, Angew. Chem. Int. Ed. 2001, 40, 2166-2168.
(87)K. Seki, Chem. Commun. 2001, 1496-1497.
(88)S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148-1150.
(89)S. F. Lai, C. Y. Cheng, K. J. Lin, Chem. Commun. 2001, 12, 1082-1083.
(90)R. A. Carboni, R. V. Lindsey, J. Am. Chem. Soc. 1959, 81, 4342-4346.
(91)M. J. Haddadin, S. J. Firsan, B. S. Nader, J. Org. Chem. 1979, 44, 629-630.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 2.毛連塭 (1989)。實施創造思考教育的參考架構。創造思考教育,創刊號,2-9。
2. 4.呂燕卿 (1999)。藝術與人文學習領域綱要與統整性互融式課程設計之觀念。美育,106,29-38。
3. 6.洪顯超 (2003)。從後現代主義的藝術課程觀-談九年一貫「藝術與人文」領域課程理念。國教之友,54(4),3-7。
4. 7.林小玉 (2002a)。音樂創造力之內涵與研究趨勢探討。音樂藝術學刊,2,87-118。
5. 8.林小玉 (2003)。藝術與人文教師應知的創造力五提問與創造力教育七建議。國民教育,43(6),50-55。
6. 11.金信庸 (1992)。曲調在音樂創作中之運用。國教之聲,26(2),31-38。
7. 12.金信庸 (2003a)。音樂與視覺藝術統整教學之省思。國教之友,54(4),21-32。
8. 14.柯啟瑤 (2000)。做一位能掌握課程的主人翁。翰林文教雜誌,7,1-2。
9. 15.高翠霞 (1998)。主題式教學的理念-國小實施課程統整的可行策略。教育資料與研究,25,9-11。
10. 17.許允麗 (2003)。藝術與人文學習領域教學統整設計。國民教育,43(6),30-37。
11. 18.陳永明 (1994)。論創作思考模式(策略)在國小音樂創作教學中的應用。國民教育,34(7-8),48-62。
12. 19.陳奐宇 (2005)。創造力在美術教學上的運用。美育,145,66-79。
13. 21.陳朝平 (2003)。藝術與人文課程理念與目標析論。美育,131,76-80。
14. 22.陳曉雰 (2002)。音樂教學法另一篇:戈登音樂學習理論。國教新知,49(2),23-30。
15. 26.張哲榕 (2005)。Elliott的美育思想與九年一貫藝術與人文領域。臺灣教育,633,32-37。