跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 00:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許能凱
研究生(外文):Neng-Kai Hsu
論文名稱:金融商品波動性預測
論文名稱(外文):The Forecasting Volatility of Financial Goods
指導教授:李命志李命志引用關係
指導教授(外文):Ming-Chih Lee
學位類別:碩士
校院名稱:淡江大學
系所名稱:財務金融學系碩士班
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2004
畢業學年度:94
語文別:中文
論文頁數:60
中文關鍵詞:波動性預測一般化自我迴歸異質條件變異數模型限制最小平方估計式模型一般化分散落後形式模型
外文關鍵詞:forecasting volatilityGARCHthe restricted least squares(RLS)GEN
相關次數:
  • 被引用被引用:3
  • 點閱點閱:428
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
波動性的預測攸關資產配置、投資組合避險、風險控管以及衍生性金融商品定價的正確性。本研究以三種不同類別的金融市場,包含股價指數、匯率及個股股價,一共六種金融商品為研究對象,進行六個波動性估計模型之預測能力之比較,包括STD、EWMA、GARCH(1,1)-N、GARCH(1,1)-G、及Ederington and Guan (2005)所提出的RLS和GEN模型。以下列幾個議題來探討何種模型的預測績效最佳:1、過去報酬衝擊權重設定的適當性。2、參數估計值與估計程序的關聯性3、採用四種評估預測績效之方法,希望藉以判斷模型預測對評估方法是否敏感,以及模型的預測績效是否具有普遍性。期望透過本研究之實證分析,期待獲得一個廣泛性預測較佳的模型,進一步提供投資決策者掌握金融資產報酬波動性的可行管道。實證結果發現:
1、 GARCH(1,1)放太多的權重在最新的觀察上,而給予較舊的觀察值之權重是不夠的。
2、 對於相同的模型用不同的參數估計程序,則會導致完全不同的參數估計值。
3、 整體而言不論在何種金融市場均以GEN模型的預測績效最好,其次為RLS模型,而GARCH(1,1)-G模型普遍優於GARCH(1,1)-N模型。
We apply Ederington and Guan (2005), to examine the forecasting ability of sixth time-series volatility models, including historical variance, EWMA, GARCH(1,1)-N, GARCH(1,1)-G, and restricted least squares (RLS) and GEN. We seek to determine why one model or group of models forecasts another focusing on three issues: 1、the proper weighting of older versus recent observations, 2、the relevance of the parameter estimation procedure, and 3、we use four criterions to measure forecast ability. Our evidence indicates
1、The GARCH(1,1)model puts too much weight on the most recent observations and not enough on older observations.
2、Different parameter estimation procedures result in quite different parameter estimates for the same model.
3、The GEN model is the best volatility forecasting model, RLS model is the second, and GARCH(1,1)-G model is always superior to GARCH(1,1)-N model.
目 錄
中文提要................................................................................................................... i
英文提要................................................................................................................... ii
謝辭........................................................................................................................... iii
目錄........................................................................................................................... iv
圖表目錄................................................................................................................... v
第一章 緒論............................................................................................................ 1
第一節 研究動機....................................................................................................1
第二節 研究目的....................................................................................................3
第三節 研究限制....................................................................................................4
第四節 論文架構....................................................................................................5
第五節 研究流程....................................................................................................6
第二章 相關理論及文獻探討.......................................................................... 7
第一節 波動性的特性............................................................................................7
第二節 波動性估計模型的發展............................................................................8
第三節 波動性預測的文獻回顧..........................................................................16
第三章 研究方法與實證模型........................................................................ 24
第一節 資料來源與處理......................................................................................24
第二節 常態性檢定..............................................................................................27
第三節 序列相關檢定..........................................................................................28
第四節 實證模型..................................................................................................29
第五節 預測績效的評估標準..............................................................................35
第四章 實證分析................................................................................................ 37
第一節 實證步驟..................................................................................................37
第二節 資料分析..................................................................................................38
第三節 模型參數之估計......................................................................................41
第四節 模型預測能力之比較..............................................................................46
第五章 結論......................................................................................................... 55
參考文獻................................................................................................................. 57
圖 表 目 錄
圖1-1 研究流程....................................................................................................... 6
表3-1 實證模型與資料描述..................................................................................25
圖4-1 每日收盤價之時間序列走勢圖................................................................. 38
圖4-2 日報酬之走勢圖......................................................................................... 39
表4-1 每日收盤價之基本統計檢定量..................................................................40
表4-2 日報酬之基本統計檢定量..........................................................................40
表4-3 GARCH(1,1)-N模型之參數估計值............................................................41
表4-4 GARCH(1,1)-G模型之參數估計值............................................................42
表4-5 GARCH(1,1)模型之標準化殘差序列相關檢定........................................42
表4-6 RLS模型之參數估計值..............................................................................43
圖4-3 東京日經指數之GARCH-G、RLS和GEN模型隱含參數..................... 44
表4-7 GEN模型之參數估計值.............................................................................45
表4-8 MAE績效評估結果...................................................................................48
表4-9 RMSE績效評估結果.................................................................................50
表4-10 HMAE績效評估結果.................................................................................52
表4-11 HRMSE績效評估結果...............................................................................54
參考文獻
一、中文部分
吳佳貞、(1997),波動度預測模型之探討,國立政治大學金融研究,碩士論文。
蔡麗茹、葉銀華,(1998),“不對稱GARCH族模型預測能力之比較研究”,中國財務學會年會論文集,頁263-278。
呂文正,(1998),股票報酬率的波動性研究─ARCH-family、SWARCH模型之應用,國立台灣大學經濟研究所,碩士論文。
黃弘文,(1998),股價指數期貨上市對指數波動性之研究─以香港恆生指數為例,國立中興大學統計學研究所,碩士論文。
林楚雄、劉維琪、吳欽杉,(1999),“不對稱GARCH模型的研究”,管理學報,第十六卷,第三期,頁479-515。
鄧淑芬,(2000),波動性估計模型預測能力之比較─美國及亞洲各國股價指數之實證研究,國立高雄第一科技大學財務管理系,碩士論文。
二、英文部分
Akgiray, V. (1989). “Conditional Heteroskedasticity on Time Series of Stock Returns: Evidence and Forecasts.” Journal of Business, 62, 55-80.
Andersen, T. G., Bollerslev, T., and Lange, S. (1999). “Forecasting financial market volatility: Sample frequency vis-à-vis forecast horizon.” Journal of Empirical Finance, 6, 457-477.
Black, F. (1976). “Studies of stock price volatility changes, Proceedings from the American Statistical Association.” Business and economics Statistics Section, 177-181.
Black, F., and Scholes, M.S. (1973). “The Pricing of Options and Corporate Liabilityes.” Journal of political Economy, 3, 637-327.
Bollerslev, T. (1986). “Generalized Autoregressive Conditional Heteroscedasticity.” Journal of Econometrics, 31, 307-327.
Bollerslev, T., and Engle, R. F. (1986). “Modeling the Persistence of Conditional Variance.” Econometric Review, 5, 1-50.
Box and Jenkins. (1976). Time Series Analysis: Forecasting and Control, Holden-Day Inc.
Brailsford, T. J., and Faff, R. W. (1996). “An evaluation of volatility forecasting techniques.” Journal of Banking and Finance, 20, 165-185.
Cao, C. Q., and Tsay, R. S. (1992). “Nonlinear time series analysis of stock volatilities.” Jounal of Applied econometrics, 7, 165-185.
Chong, C. W., and Ahmad, M. I., and Abdulah, M. Y. (1999). “Performance of GARCH models in forecasting stock market volatility.” Journal of Forecasting, 18, 333-343.
Chou, R. Y. (1988). “Volatility persistence and stock valuations: Some empirical evidence using GARCH.” Journal of Applied Econometrics, 3, 279-294.
Christie, A. A. (1982). “The stochastic behavior of common stock variances: Value, leverage, and interest rate dffects.” Journal of Financial Economics, 10, 407-432.
Ding, Z., Granger, C., and Engle, R. F. (1993). “A long memory property of stock market returns and a new model.” Journal of Empirical Finance, 1, 83-106.
Ederington, L. H., and Guan, W. (2005). “Forecasting Volatility.” Journal of Futures Markets, 25, 465-490.
Engle, R. F. (1982). “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of the United Kingdom Inflation.” Econometrica, 50, 987-1008.
Engle, R. F. (1990). “Discussion: Stock Market Volatility and The Crash of 87.”Review of Financial Studies, 3, 109-106.
Engle, R. F., Lilien, D. M., and Robins, R. P. (1987). “Estimating Time Varying Risk Premia in the Term Structure: the ARCH-M Model.” Econometrica, 55, 34-105.
Fama, E. F. (1965). “The Behavior Stock Market Prices.” Journal of Business, 38, 34-105.
Figlewski, S. (1997). “Forecasting volatility.” Financial Markets, Institutions, and Instruments, 6, 1-88.
Franses, P. H., and Dijk, D. V. (1996). “Forecasting stock market volatility using (non-linear) GARCH models.” Journal of Forecasting, 15, 229-235.
Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). “On the Relation between the Expected Value and the Volatility on the nominal Excess Returns on Stocks.” Journal of Finance, 48, 1779-1801.
Gokcan, S. (2000). “Forecasting Volatility of Emerging Stock Markets: Linear versus Non-linear GARCH Models.” Journal of Forecasting, 19, 199-504.
Granger, C. W. J., and Sin, C. Y. (2000). “Modeling the Absolute Returns of Different Stock Indices: Exploring the Forecastability of an Alternative Measure of Risk.” Journal of Forecasting, 19, 277-298.
Granger, C. W. J., and Ding, Z. (1995). “Some properties of absolute return, an alternative measure of risk.” Annales d’’Economie et de Statistique, 40, 97-91.
Harvey, A., Ruiz, E., and Sentana, E. (1992). “Unobserved Component Time Series Models with ARCH Disturbances.” Journal of Econometrics, 52, 129-157.
Heynen, R. C., and Kat, G. M. (1994). “Volatility Prediction: A Comparison of the Stochastic Volatility, GARCH(1,1) and EGARCH(1,1) Models.” Journal of Derivatives, 50-65.
Huber, P. (1996) Robust Statistical Procedures, 2nd ed., Society for Industrial and Applied Mathematics. Philadelphia.
Kariya, T., Tsukuda, Y., and Maru, J. (1990). “Testing the random walk hypothesis for Japanese stock prices in S. Taylor’s model.” Hitotsubashi University Discussion Paper.
Lee, S. B., and Ohk, K. Y. (1992). “Stock and Index Futures Listing and Structure Change in Time-Varying Volatility.” Journal of Futures Markets, 12, 493-509.
Ljung, G. M., and Box, G. E. P. (1978). “On a Measure of Lack of Fit in Time Series Models,” Biometrical, 65, 297-303.
Lopez, J. (2001). “Evaluating the predictive accuracy of volatility models.” Journal of Forecasting, 20, 87-109.
Mandelbrot, B. (1963). “The Variation of Certain Speculative Prices.” Journal of Business, 36, 394-419.
Mcmillan, D., Speight, A., and Apgwilym, O. (2000). “Forecasting UK stock market volatility.” Applied Financial Economics, 10, 435-448.
Nelson, D. B. (1991). “Conditional Heteroskedasticity in Asset Returns: A New Approach.” Econometrica, 59, 327-370.
Pagan, A. R., and Schwert, G. W. (1990). “Alternative models for conditional stock volatility.” Journal of Econometrics, 45, 267-290.
Poon, S. H., and Granger, C. (2003). “Forecasting volatility in financial markets: A review.” Journal of Economic Literature, 41, 478-539.
Schmidt, P. (1974). “A modification of the Almon distributed lag.” Journal of the American Statistical Association, 69, 679-681.
Schwrt, G. W. (1990). “Stock volatility and the crash of 87.” Review of Financial Studies, 3, 77-102.
Staudte, R., and Simon, S. (1990). Robust Estimation and Testing, John Wiley & Sons: New York.
Taylor, S. (1986). Modeling Financial Time Series, John Wiley: New York.
Tsay, R. S. (2000). Analysis of Financial Time Series. 中央研究院統計科學研究所客座系列專題講前。
Walsh, D. M., and Tsou, G. YG. (1998). “Forecasting index volatility: sampling integral and non-trading effects.” Applied Financial Economics, 8, 477-485.
West, K., and Cho, D. (1995). “The predictive ability of several models on exchange rate volatility.” Journal of Econometrics, 69, 367-391.
Zakoian, J. M. (1994). “Threshold heteroskedastic models.” Journal of Economic Dynamics and Control, 18, 931-955.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top