# 臺灣博碩士論文加值系統

(44.200.135.224) 您好！臺灣時間：2024/08/09 11:05

:::

### 詳目顯示

:

• 被引用:0
• 點閱:203
• 評分:
• 下載:0
• 書目收藏:2
 在計量管制圖中，最廣為各界使用的就是X-bar管制圖和\$R\$管制圖，X-bar管制圖管制製程平均數mu是否維持在一給定的水準mu_0上，當製造商生產的紀錄非常良好時，我們可以允許其製程平均可以在一個小範圍(mu_L,mu_U)中偏移，而不至於產生過多的不良品，因此，可將統計假設H_0:mu=mu_0轉換成H_0:mu_L<=mu<=mu_U，結合規格界限、生產者風險及消費者風險，發展出另一個新的管制圖，此即為允收管制圖。傳統的允收管制圖只能適用在常態分配資料下，如果應用在非常態資料中，將會高估型一或型二誤差。Chou et al. (2005)利用Burr分配設計出適用於非常態資料的允收管制圖，不過此一管制圖在資料呈對稱分配時，無法退化到一般常態分配下之允收管制圖，進而限制其實用性。本論文利用Skew Normal分配設計允收管制圖， 因為Skew Normal分配可以完全退化到常態分配，所以Skew Normal允收管制圖也適用於常態分配資料的平均數監控。
 In variable control charts, the X-bar and R charts are widely used to monitor the process mean and variability of the quality characteristic. When manufacturer''s record was very well, we can accept the process mean shifts between a predetermined interval (mu_L,mu_U), and will not produce many nonconforming units. In this design, an acceptance control chart can be constructed by combining with the specifications, producer''s risk and consumer''s risk. Conventional acceptance control chart is designed to monitor the process mean of normal data. But it always results in a higher probabilities of type I or type II errors when the chart is used to monitor the non-normal data. Chou et al. (2005)developed an acceptance control chart based on the Burr distribution and they used it to monitor the process mean of non-normal data. The main disadvantage of Burr acceptance control chart is that it can not reduce to the conventional acceptance control chart when it is used to monitor symmetric data. The thesis develops a new acceptance control chart based on the Skew Normal distribution to overcome the problem. The Skew Normal acceptance control chart can be used to monitor the process mean whenever the process data is symmetric and it can reduce to the conventional acceptance control chart when the data is symmetric.
 目錄第一章 緒論 11.1 研究背景 11.2 研究動機與目的 21.3 論文架構 2第二章 文獻探討與相關研究32.1 X-bar管制圖與允收管制圖的文獻探討 32.2 各種X-bar管制圖介紹 52.2.1 Shewhart X-bar管制圖 52.2.2 WV X-bar管制圖 52.2.3 WSD X-bar管制圖 82.2.4 SC X-bar管制圖 122.2.5 Burr X-bar管制圖 162.3 相關的允收管制圖 202.3.1 常態允收管制圖 202.3.2 Burr允收管制圖 25第三章 Skew Normal X-bar管制圖及允收管制圖 343.1 Skew Normal分配 343.2 SN X-bar管制圖 373.3 SN允收管制圖 38第四章 模擬研究 46第五章 實例 54第六章 結論 62參考文獻 632.1 f(x) ÖSè(a)X p:d:f:=(b)f(x) 7TUV ÍIçp:d:f:=(c)f(x) ïTUV ÍIçp:d:f:= . . . . . . . . . . . . . . . . 92.2 f(x) WXYV:(a)f(x)7TUÍWX#4=(b)f(x)ïTUÍWX#4=(c)Z[Ö3&WXÖ3= . . . . . . . . . . . . . . . . . . 102.3 2]÷X FX Ö3ï òó &(a)X » N(¹; ¾2)=(b)X »N(¹; ¾2n ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.1 Ž¸ïÍSNÖ3(a)SN(0)=(b)SN(5)=(c)SN(-5)= . . . . . . . . 364.1 þxU^Xò ô _8`ab(m=30) . . . . . . . . . . . . . . . 514.2 þxU^Xò ô _8`ab(m=50) . . . . . . . . . . . . . . . 525.1 60c defgíî(a)h¶ô=(b)QQ-plot= . . . . . . . . . . . 555.2 deíî h¶ô(a)SNFnormal 32=(b)250cbootstrapi
 參考文獻Azzalini, A. (1985), A class of distributions which includes the normal ones.ScandinavianJournal of Statistics, 12, 171-178.Burr, I. W. (1942), Cumulative frequency functions. Annals of Mathematical Statistics, 13, 215-232.Burr, I. W. (1973), Parameters for a general system of distributions to match a grid of a3 and a4. Communications in Statistics, 2(1), 1-21.Choobineh, F. and Branting D. (1986), A simple approximation for semivariance. European Journal of Operations Research, 27, 364-370.Choobineh, F. and Ballard, J. L. (1987), Control-limits of QC charts for skeweddistributions using weighted variance. IEEE Transactions on Reliability, 36, 473-477.Cornish, E. A. and Fisher, R. A. (1937), Moments and cumulants in the specifications ofdistributions. Extrait de la Revue de l’Institute International de Statistique, f 4, 1-14.Chang, Y. S. and Bai, D. S. (2001), Control charts for positively-skewed populations withweighted standard deviations. Quality and Reliability Engineering International, 17, 397-406.Cheng, S. W. (1994), Practical implementation of the process capability indices. QualityEngineering, 7(2), 239-259.Chang, Y. S. and Bai, D. S. (1995), X-bar and R control charts for skewed populations. Journal of Quality Technology, 27, 120-131.Chou, C.-Y. and Chen, C.-H. and Liu, H.-R. (2005), Acceptance control charts fornon-normal data. Journal of Applied Statistics, 32, 25-26.Chan, L. K. and Cui, H. J. (2003), Skewness correction X-bar and R charts for skeweddistributions. Naval Research Logistics, 50, 1-19.Dodge, Y. and Rousson, V. (1999), The complications of the fourth central moment. TheAmerican Statistician, 53, 267-269.Ferrell, E. B. (1958), Control charts for log-normal universe. Industrial Quality Control,15, 4-6.Freund, R. A. (1957), Acceptance control charts. Industrial Quality Control, 12, 13-23.Gupta, R. C.,Brown, N. (2001), Reliability studies of the skew-normal distribution and itsapplication to a strength-stress model. Communications in Statistics: Theory and Methods , 30, 2427-2445.Geary, R. C. (1947), Testing for Normality. Biometrika, 34, 209-242.Lucas, J. M. (1985), Counted data CUSUM''s. Technometrics, 27, 129-144.Montgomery, D.C. (2005), Introduction to Statistical Quality Control, 5th edn, Wiley, New York.Mudholkar, G. S. and Hutson, A. D. (2000), The epsilon-skew-normal distribution foranalyzing near-normal data. Journal of Statistical Planning and Inference, 83, 291-309.Nelson, P. R. (1979), Control charts for Weibull processes with standards given. IEEETransactions on Reliability, 28, 383-387.Prentice, R. L. (1975), Discrimination among someparametric models. Biometrika, 62, 607-614.Saniga, E. M. and Shirland, L. E. (1977), Quality control in practice: a survey. Quality Progress, 10, 30-33.Tsai, T.-R. (2005), A study of skew normal process on quality control, Technical Report, No. 1, Department of Statistics, Tamkang University.Vardeman, S. and Ray, D.(1985), Average run lengths for CUSUM schemes when observations are exponentially distributed. Technometrics, 27, 145-150.Yourstone, S. A. and Zimmer, W. J. (1992), Non-normality and the design of control charts for averages. Decision Sciences, 23, 1099-1113.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 利用類神經模糊理論預測壽險保單早期失效 2 統計推論 3 內線交易預警模型之建構 4 最佳化允收水準與總成本問題-以蝕刻片材為例 5 考慮總體經濟及財務與非財務因素建構企業財務危機預警模型 6 裁決性應計項目模型之評估

 1 廖紫均，<社區博物館與地方寺廟>，博物館學季刊，台中：國立自然科學博物館，2002。 2 王嵩山，<物質文化的展示>，博物館學季刊，台中：國立自然科學博物館，1990。

 1 資料採礦技術在拍賣網站消費模式之應用 2 一般化型二逐步設限下對雙參數Gompertz分配與雙參數極值分配的統計推論 3 以資料採礦技術與機器視覺方法辨認半導體晶圓圖的錯誤樣式 4 垃圾郵件過濾：資料採礦與中文斷詞技術之應用 5 台灣地區加油站之相對經營績效評估—資料包絡法之應用 6 無母數迴歸在稀疏及共線資料下的改進方法之研究 7 建構一整合型品質機能展開模式用於筆記型電腦開發之研究 8 基數八無進位式快速除法器架構之設計 9 我國小型律師事務所經營策略之分析-以桃園地區為例- 10 中國人民解放軍在中國崛起中的角色、地位與行動 11 台指選擇權隱含波動指標預測品質之解析 12 X光吸收光譜對氮與硼摻雜奈米鑽石薄膜之研究 13 地理資訊系統應用在大屯溪流域之生態水文研究 14 《典論．論文》與〈文賦〉比較研究 15 論「臺灣意識」與「中國意識」的整合對兩岸關係的影響

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室