跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/20 09:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉鴻裕
研究生(外文):Hong-Yu Liu
論文名稱:使用任意長方QAM調變之正交時空區塊碼於雷利衰退通道的精確錯誤率分析
論文名稱(外文):Exact Error Probability for Orthogonal Space-Time Block Coded MIMO Systems Using Arbitrary Rectangular QAM Transmission over Rayleigh Fading Channels
指導教授:嚴雨田
指導教授(外文):Rainfield Y. Yen
學位類別:博士
校院名稱:淡江大學
系所名稱:電機工程學系博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:70
中文關鍵詞:正交時空區塊碼多輸入多輸出雷利衰退
外文關鍵詞:OSTBCMIMORayleigh fadingQAM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中,我們提出”先平均法”推導正交時-空區塊碼使用任意長方QAM於雷利衰退通道的精確錯誤率,並假設叢集子通道間為獨立的,而其子通道的功率可為均相異、均相同以及前兩者之混合等三種情況。再者,常見之正方QAM、一維PAM與BPSK調變方法均是本篇所考慮任意長方QAM的特例。特別要強調者,乃所有推導結果的最終公式均由最基本之數學式組成,無特殊高階的超越函數或尚未求出解的積分式,並且在討論混合均相異、均相同功率之雷利衰退通道時,我們亦說明如何將推導結果延伸至Nakagami-m衰退通道。
我們推導的方法有別於文獻中所提供者,乃以估計誤差機率密度函數為基礎之分析法成功的得到精確錯誤率公式,並且在證明的過程中,得到多個新發現的性質與恆等式。我們亦將理論值模擬與蒙地卡羅電腦模擬比較,其結果顯示兩者非常契合。另外,從模擬曲線也得知均相同功率通道比均相異功率通道的錯誤率還低。又正方形QAM較長方形QAM有更佳之績效表現。另外,並深入討論一般化正交時空區塊碼的錯誤率特性,因為目前文獻中已提出或討論正交時空區塊碼的精確錯誤率分析,只限於一般化正交時空區塊碼的特例。我們發現,一般化正交時空區塊碼對於不同的字符,可能造成不等效錯誤率,這在已知的文獻中並未曾被提及與證明。雖然在公式推導的過程中,假設通道間為獨立的,我們亦說明如何將我們的方法應用於有關聯性的通道中。
In this work, a pre-averaging method is proposed for deriving theoretical symbol error probability (SEP) expressions for orthogonal space-time block code (OSTBC) diversity systems employing arbitrary rectangular M-QAM transmission over flat Rayleigh fading channels. Independent fading between diversity channels are assumed for simplicity as the technique of channel decorrelation has been proposed in the literature. Channel average powers may be distinctive, identical, or mixed with both. The rectangular M-QAM results are extended to square M-QAM, M-PAM, and binary antipodal signaling. All derived expressions are in elementary forms without complicated high order transcendental functions and/or unevaluated integrals and hence are strictly exact and can be readily simulated by the computer with good accuracy. We delve into the error probability performance by proposing a new derivation method, from which many new equations and properties are shown and proved. Moreover, we show that mixed Rayleigh fading results can be readily extended to various Nakagami-m fading results. We use a four transmit antenna system with a half-rate OSTBC for 16-QAM signaling as the example to demonstrate that our theoretical results are in excellent agreements with the Monte Carlo simulated results. From simulation curves, we show that, under the independent channel fading condition, channels with identical powers have better error rate performance than channels with distinctive powers. Moreover, we discuss the performance of OSTBC with generalized complex orthogonal design (GCOD) in a rather general scope, which has not been explored in depth in the literature. Thus far, the SEP expressions for OSTBC found in the literature are only restricted to complex orthogonal design (COD) or some special GCOD cases. An important discovery is that OSTBC can produce different SEP performances for different information symbols. Although our derivation is presented based on the assumption of independent fading channels, we also provide an outline for the derivation for correlative fading channels.
CONTENTS

CHINESE ABSTRACT I
ENGLISH ABSTRACT III
ACKNOWLEDGEMENTS V
CONTENTS VI
LIST OF FIGURES VIII
1 INTRODUCTION 1
2 THE OSTBC COMMUNICATION SYSTEM MODEL 5
2.1 The OSTBC Design……………………………………………5
2.2 Channel Model and Decoding Algorithm…………………6
3 SEP CALCULATION FOR ARBITRARY RECTANGULAR M-QAM SIGNALS 10
3.1 Symbol Estimate Error PDF………………………………10
3.2 Channels with Distinctive Powers………………………12
3.3 Channels with Identical Power ………………………19
3.4 Channels Mixed with Distinctive and Identical Powers…………………………………………………………………24
4 SIMULATION RESULTS 29
5 CONCLUSIONS 40
APPENDIX A SYMBOL ESTIMATE ERROR PDF 42
APPENDIX B PROOF OF DECISION CORRECT PROBABILITIES FOR CHANNELS WITH DISTINCTIVE POWERS 44
APPENDIX C PROOF OF (B.4) 47
APPENDIX D PROOF OF (3.10) 49
APPENDIX E COMPARISON OF THE SQUARE QAM RESULT WITH THE ALOUINI/GOLDSMITH RESULT 53
APPENDIX F PROOF OF DECISION CORRECT PROBABILITIES FOR CHANNELS WITH IDENTICAL POWERS 55
APPENDIX G PROOF OF (3.36) 64
REFERENCES 66
LIST OF FIGURES

Figure 3.1 Illustrations for calculating correct probabilities in a 16-QAM constellation, (a) integration region for , (b) integration region for , (c) integration region for ……………………………………………………….…………………………….15
Figure 3.2 vs. for 16-QAM signaling in four transmit-one receive antenna system with the rate 1/2 Tarokh code (eq. (38) in [8]) over Rayleigh fading channels with distinctive powers, , , , ……...….19
Figure 4.1 vs. for square 16-QAM signaling in four transmit-one receive antenna system with the rate 1/2 Tarokh code (eq. (38) in [8]) code over Rayleigh fading channels with distinctive powers. Curve (1) ; Curve (2) ; Curve (3)
…………………………………………………………………………………………30
Figure 4.2 vs. for 16-QAM signaling in a four transmit-one receive antenna system with the rate 1/2 Tarokh code (eq. (38) in [8]) over Rayleigh fading channels with identical powers. Various combinations……….…………………31
Figure 4.3 vs. for 256-QAM signaling in a four transmit-one receive antenna system with the rate 1/2 Tarokh code (eq. (38) in [8]) over Rayleigh fading channels with identical powers. Various combinations…………………..….…32
Figure 4.4 Comparison between theoretical SEP performance and Monte Carlo simulated performance for square 16-QAM signaling in the same system as Figure 4.2…………………………………………………………………………….………..33
Figure 4.5 Comparison for square 16-QAM signaling over Rayleigh fading channels with identical powers for two cases of four transmit-one receive antenna systems. Curve (1) rate 1/2 Tarokh code (eq. (38) in [8]); Curve (2) rate 3/4 Tarokh code (eq. (40) in [8])……………………………………………………………………………………..35
Figure 4.6 Performance of rate 7/11 OSTBC/GCOD using five transmit-one receive antenna system for square 16-QAM signaling over Rayleigh fading channels with distinctive powers. ……………………..…37
Figure 4.7 Effect of channel correlation on SEP of the rate 1/2 GCOD code given by eq. (38) in [8] for square 16-QAM signaling over correlative Rayleigh fading channels with distinctive powers for four transmit-one receive antenna system. ……………………………………………………..39
REFERENCES

[1] A. Wittneben, “Base station modulation diversity for digital SIMULCAST,” in Proc. 1991 IEEE Veh. Tecnol. Conf., St. Louis, MO, USA, May 1991, pp. 848-853.
[2] A. Wittneben, “A new bandwidth efficient transmit antenna modulation diversity schemes for linear digital modulation,” in Proc. 1993 IEEE Int. Conf. Commun., Geneva Switzerland, May 1993, pp. 1630-1634.
[3] N. Seshadri and J. H. Winters, “Two signaling schemes for improving the error performance of frequency-division-duplex (FDD) transmission systems using transmitter antenna diversity,” in Proc. 1993 IEEE Veh. Technol. Conf., Secaucus, NJ, USA, May 1993, pp. 508-511.
[4] J. H. Winters, “The diversity gain of transmit diversity in wireless systems with Rayleigh fading,” in Proc. 1994 IEEE Int. Conf. Commun., vol. 2, New Orleans, LA, May 1994, pp. 1121-1125.
[5] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
[6] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998.
[7] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time codes for wireless communication: performance results,” IEEE J. Select. Areas Commun., vol. 17, no. 3, pp. 451-460, Mar. 1999.
[8] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456-1467, July 1999.
[9] B. Hochwald, T. L. Marzetta, and C. B. Papadias, “A transmitter diversity scheme for wideband CDMA systems based on space-time spreading,” IEEE J. Select. Areas Commun., vol. 19, no. 1, pp. 48-60, Jan. 2001.
[10] X-B. Liang, “A high rate orthogonal space-time block code,” IEEE Commun. Lett., vol. 7, no. 5, pp. 222-223, May 2003.
[11] L. C. Tran, J. Seberry, Y. Wang, B. J. Wysocki, T. A. Wysocki, T. Xia, and Y. Zhao, “Two complex orthogonal space-time codes for eight transmit antennas,” Electronics Lett., vol. 40, no. 1, Jan. 2004.
[12] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antenna,” Wireless Personal Commun., vol. 6, pp. 311-335, Mar. 1998.
[13] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans. Telecommun., vol. 10, no. 6, pp. 585-595, Nov./Dec. 1999.
[14] A. F. Naguib, N. Seshadri, and A. R. Calderbank, “Increasing data rate over wireless channels,” IEEE Signal Processing Mag., vol. 17, no. 3, pp. 76-92, May 2000.
[15] S. Sandhu and A. Paulraj, “Space-time block codes: A capacity perspective,” IEEE Commun. Lett., vol. 4, no. 13, pp. 384-386, Dec. 2000.
[16] G. Ganesan and P. Stoica, “Space-time block codes: A maximum SNR approach,” IEEE Trans. Inform. Theory, vol. 47, no. 4, pp. 1650-1656, May 2001.
[17] X. Li, T. Lau, G. Yue, and C. Yin, “A squaring method to simplify the decoding of orthogonal space-time block codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1700-1703, Oct. 2001.
[18] M. Uysal and C. N. Georghiades, “Error performance analysis of space-time codes over Rayleigh fading channels,” in Proc. IEEE VTS-Fall 2000, vol. 5, Boston, MA., Sept. 2000, pp. 2285-2290.
[19] G. Taricco and E. Biglieri, “Exact pairwise error probability of space-time codes,” IEEE Trans. Inform. Theory, vol. 48, no. 2, pp. 510-513, Feb. 2002.
[20] H. Shin and J. H. Lee, “Exact symbol error probability of orthogonal space-time block codes,” in Proc. IEEE GLOBECOM’02, vol. 2, Taipei, Taiwan, Nov. 17-21, 2002, pp. 1197-1201.
[21] C. Gao and A. M. Haimovich, “BER analysis of MPSK space-time block codes with differential detection,” IEEE Commun. Lett., vol. 7, no. 7, pp. 314-316, July 2003.
[22] M. Gharavi-Alkhansari and A. B. Gershman, “Constellation space invariance of orthogonal space-time block codes with application to evaluation of the exact probability of error,” in Proc. IEEE GLOBECOM’03, vol. 4, 2003, pp. 1920-1924.
[23] M. Gharavi-Alkhansari and A. B. Gershman, “Exact symbol-error probability analysis for orthogonal space-time block codes: two- and higher dimensional constellations cases,” IEEE Trans. Commun., vol. 52, no. 7, pp. 1068-1073, July 2004.
[24] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communications. Cambridge, UK: Cambridge Univ. Press, 2003.
[25] M. K. Simon and M-S. Alouini, “A unified approach to the performance analysis of digital communication over generalized fading channels,” Proc. IEEE, vol. 86, no. 9, pp. 1860-1877, Sept. 1998.
[26] M-S. Alouini and A. Goldsmith, “A unified approach for calculating error rates of linearly modulated signals over generalized fading channels,” IEEE Trans. Commun., vol. 47, no. 9, pp. 1324-1334, Sept. 1999.
[27] M. K. Simon and M-S. Alouini, Digital communication over fading channels. New York: Wiley, 2000.
[28] V. A. Aalo, “Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment,” IEEE Trans. Commun., vol. 43, no. 8, pp. 2360-2369, Aug. 1995.
[29] J. Lu, T. Tjhung, and C. C. Chai, “Error probability performance of L-branch diversity reception of MQAM in Rayleigh fading,” IEEE Trans. Commun., vol. 46, no. 2, pp. 179-181, Feb. 1998.
[30] A. Annamalai, C. Tellambura, and V. K. Bhargava, “Exact evaluation of maximal-ratio and equal-gain diversity receivers for M-ary QAM on Nakagami fading channels,” IEEE Trans. Commun., vol. 47, no. 9, pp. 1335-1344, Sept. 1999.
[31] A. Annamalai and C. Tellambura, “Error rates for Nakagami-m fading multichannel reception of binary and M-ary signals,” IEEE Trans. Commun., vol. 49, no. 1, pp. 58-68, Jan. 2001.
[32] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2001.
[33] X. Dong and N. C. Beaulieu, “Optimal maximal ratio combing with correlated diversity branches,” IEEE Commun. Lett, vol. 6, no. 1, pp. 22-24, Jan. 2002.
[34] K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun., vol. 50, no. 7, pp. 1074-1080, July 2002.
[35] E. A. Lee and D. G. Messerschmit, Digital Communication, 2nd ed. Boston, MA: Kluwer Academic, 1994.
[36] B. Vucetic and J. Yuan, Space-Time Coding. West Sussex, England: Wiley, 2003.
[37] S. Zhou and G. B. Giannakis, “Optimal transmitter eigen-beamforming and space-time block coding based on channel correlations,” IEEE Trans. Inform. Theory, vol. 49, no. 7, pp. 1673-1690, July 2003.
[38] C. Xu and K. S. Kwak, “On decoding algorithm and performance of space-time block codes,” IEEE Trans. Wireless Commun., vol. 4, no.3, pp. 825-829, May 2005.
[39] W. Su and X-G. Xia, “Two generalized complex orthogonal space-time block codes of rates 7/11 and 3/5 for 5 and 6 transmit antennas,” IEEE Trans. Inform. Theory, vol. 49, no. 1, pp. 313-316, Jan. 2003.
[40] X-B. Liang, “A complex orthogonal space-time block code for 8 transmit antennas,” IEEE Commun. Lett, vol. 9, no. 2, pp. 115-117, Feb. 2005.
[41] A. D. Poularikas, The Handbook of Formulas and Tables for Signal Processing, Florida: CRC Press/IEEE Press, 1999.
[42] D. Yoon, Y. Lee, C. Bae, K. Cho, and P. Cho, “Diversity analysis for QAM in Nakagami fading channels,” in Proc. 13th IEEE Int. Symposium on Personal, Indoor and Mobile Radio Communications, vol. 4, Daejeon Univ., South Korea, Sept. 2002, pp. 1737 – 1741.
[43] P. K. Vitthaladevuni and M-S. Alouini, “A closed-form expression for the exact BER of generalized PAM and QAM constellations,” IEEE Trans. Commun., vol. 52, no. 5, pp. 698-700, May 2004.
[44] L. Xian and H. Liu, “Exact error probability for space-time block-coded MIMO systems over Rayleigh fading channels,” IEE Proc.-Commun., vol. 152, no.2, pp.197-201, Apr. 2005.
[45] H-Y. Liu and R. Y. Yen. “Error probability for orthogonal space-time block code diversity system using rectangular QAM transmission over Rayleigh fading channels,” accepted for publishing in IEEE Trans. Signal Processing (T-SP-02343-2004.R1).
[46] R. Y. Yen, H-Y. Liu, and T. Liau,”MRC reception of rectangular M-ary QAM signals over frequency-flat Rayleigh fading channels with distinctive branch fading amplitudes,” accepted for publishing in IEE Proc.-Commun. (No. COM-2004-5144.R2).
[47] V. A. Aalo, “Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment,” IEEE Trans. Commun., vol. 43, no. 8, pp. 2360-2369, Aug. 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 蔡啟源 (2001) <老人之社區照顧—兼介紹日本「寄合之家」>社區發展季刊, 96:190-199。
2. 蘇景輝 (1999) <社區照顧實務探討>社區發展季刊,87:225-235。
3. 周月清 (1999) <英國社區照顧 --「在社區內照顧」=「由社區來照顧」>社區發展季刊,87:271-278。
4. 曾竹寧 (1999 ) <論老人社區照顧服務體系之建構 >社會工作學刊,05:141-170。
5. 林淑萱 (2003) <日本長期照護保險的發展經驗及其對台灣的啟示>。社區發展季刊,104。
6. 唐啟明 (1998) <關心銀髮族的福祉>-台灣省推行老人福利概況,社區發展季刊第83期,台北。
7. 米復國 (1988) <老人生活型態與居家環境措施之建議>《建築師》。8月號,P50-54。陳燕禎 (1998)<老人社區照顧-關懷獨居老人的具體作法>社區發展季刊,83:244--252。
8. 黃源協 (1998) <老人社區照顧的內涵與工作方法>社區發展季刊,83:157-167。
9. 吳寧遠 (1997) <由家庭支持談老人福利─>以高雄市為例,社會建設季刊,96。
10. 葉光輝 (1997) <年老父母居住安排的心理學研究:教道觀點的探討>。中央研究院民族學研究所集刊,83:121-168。
11. 楊瑪利,陳雅慧,洪震宇(2005)。<養不起的未來>。天下雜誌2005:11。
12. 林淑萱 (2003) <日本長期照護保險的發展經驗及其對台灣的啟示>。社區發展季刊,104:454。
13. 江亮演( 2002) <日本高齡者照護社區化之現況>社區發展季刊,100:251-269。
14. 蔡宏進 (2002) <德國鄉村發展示範村的發展模式>社區發展季刊,100:270-281。
15. 徐慧娟 (2003) <成功老化-老年健康的正向觀點>社區發展季刊,103:252-258。