|
REFERENCES
[1] A. Wittneben, “Base station modulation diversity for digital SIMULCAST,” in Proc. 1991 IEEE Veh. Tecnol. Conf., St. Louis, MO, USA, May 1991, pp. 848-853. [2] A. Wittneben, “A new bandwidth efficient transmit antenna modulation diversity schemes for linear digital modulation,” in Proc. 1993 IEEE Int. Conf. Commun., Geneva Switzerland, May 1993, pp. 1630-1634. [3] N. Seshadri and J. H. Winters, “Two signaling schemes for improving the error performance of frequency-division-duplex (FDD) transmission systems using transmitter antenna diversity,” in Proc. 1993 IEEE Veh. Technol. Conf., Secaucus, NJ, USA, May 1993, pp. 508-511. [4] J. H. Winters, “The diversity gain of transmit diversity in wireless systems with Rayleigh fading,” in Proc. 1994 IEEE Int. Conf. Commun., vol. 2, New Orleans, LA, May 1994, pp. 1121-1125. [5] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998. [6] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998. [7] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time codes for wireless communication: performance results,” IEEE J. Select. Areas Commun., vol. 17, no. 3, pp. 451-460, Mar. 1999. [8] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456-1467, July 1999. [9] B. Hochwald, T. L. Marzetta, and C. B. Papadias, “A transmitter diversity scheme for wideband CDMA systems based on space-time spreading,” IEEE J. Select. Areas Commun., vol. 19, no. 1, pp. 48-60, Jan. 2001. [10] X-B. Liang, “A high rate orthogonal space-time block code,” IEEE Commun. Lett., vol. 7, no. 5, pp. 222-223, May 2003. [11] L. C. Tran, J. Seberry, Y. Wang, B. J. Wysocki, T. A. Wysocki, T. Xia, and Y. Zhao, “Two complex orthogonal space-time codes for eight transmit antennas,” Electronics Lett., vol. 40, no. 1, Jan. 2004. [12] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antenna,” Wireless Personal Commun., vol. 6, pp. 311-335, Mar. 1998. [13] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans. Telecommun., vol. 10, no. 6, pp. 585-595, Nov./Dec. 1999. [14] A. F. Naguib, N. Seshadri, and A. R. Calderbank, “Increasing data rate over wireless channels,” IEEE Signal Processing Mag., vol. 17, no. 3, pp. 76-92, May 2000. [15] S. Sandhu and A. Paulraj, “Space-time block codes: A capacity perspective,” IEEE Commun. Lett., vol. 4, no. 13, pp. 384-386, Dec. 2000. [16] G. Ganesan and P. Stoica, “Space-time block codes: A maximum SNR approach,” IEEE Trans. Inform. Theory, vol. 47, no. 4, pp. 1650-1656, May 2001. [17] X. Li, T. Lau, G. Yue, and C. Yin, “A squaring method to simplify the decoding of orthogonal space-time block codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1700-1703, Oct. 2001. [18] M. Uysal and C. N. Georghiades, “Error performance analysis of space-time codes over Rayleigh fading channels,” in Proc. IEEE VTS-Fall 2000, vol. 5, Boston, MA., Sept. 2000, pp. 2285-2290. [19] G. Taricco and E. Biglieri, “Exact pairwise error probability of space-time codes,” IEEE Trans. Inform. Theory, vol. 48, no. 2, pp. 510-513, Feb. 2002. [20] H. Shin and J. H. Lee, “Exact symbol error probability of orthogonal space-time block codes,” in Proc. IEEE GLOBECOM’02, vol. 2, Taipei, Taiwan, Nov. 17-21, 2002, pp. 1197-1201. [21] C. Gao and A. M. Haimovich, “BER analysis of MPSK space-time block codes with differential detection,” IEEE Commun. Lett., vol. 7, no. 7, pp. 314-316, July 2003. [22] M. Gharavi-Alkhansari and A. B. Gershman, “Constellation space invariance of orthogonal space-time block codes with application to evaluation of the exact probability of error,” in Proc. IEEE GLOBECOM’03, vol. 4, 2003, pp. 1920-1924. [23] M. Gharavi-Alkhansari and A. B. Gershman, “Exact symbol-error probability analysis for orthogonal space-time block codes: two- and higher dimensional constellations cases,” IEEE Trans. Commun., vol. 52, no. 7, pp. 1068-1073, July 2004. [24] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communications. Cambridge, UK: Cambridge Univ. Press, 2003. [25] M. K. Simon and M-S. Alouini, “A unified approach to the performance analysis of digital communication over generalized fading channels,” Proc. IEEE, vol. 86, no. 9, pp. 1860-1877, Sept. 1998. [26] M-S. Alouini and A. Goldsmith, “A unified approach for calculating error rates of linearly modulated signals over generalized fading channels,” IEEE Trans. Commun., vol. 47, no. 9, pp. 1324-1334, Sept. 1999. [27] M. K. Simon and M-S. Alouini, Digital communication over fading channels. New York: Wiley, 2000. [28] V. A. Aalo, “Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment,” IEEE Trans. Commun., vol. 43, no. 8, pp. 2360-2369, Aug. 1995. [29] J. Lu, T. Tjhung, and C. C. Chai, “Error probability performance of L-branch diversity reception of MQAM in Rayleigh fading,” IEEE Trans. Commun., vol. 46, no. 2, pp. 179-181, Feb. 1998. [30] A. Annamalai, C. Tellambura, and V. K. Bhargava, “Exact evaluation of maximal-ratio and equal-gain diversity receivers for M-ary QAM on Nakagami fading channels,” IEEE Trans. Commun., vol. 47, no. 9, pp. 1335-1344, Sept. 1999. [31] A. Annamalai and C. Tellambura, “Error rates for Nakagami-m fading multichannel reception of binary and M-ary signals,” IEEE Trans. Commun., vol. 49, no. 1, pp. 58-68, Jan. 2001. [32] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2001. [33] X. Dong and N. C. Beaulieu, “Optimal maximal ratio combing with correlated diversity branches,” IEEE Commun. Lett, vol. 6, no. 1, pp. 22-24, Jan. 2002. [34] K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun., vol. 50, no. 7, pp. 1074-1080, July 2002. [35] E. A. Lee and D. G. Messerschmit, Digital Communication, 2nd ed. Boston, MA: Kluwer Academic, 1994. [36] B. Vucetic and J. Yuan, Space-Time Coding. West Sussex, England: Wiley, 2003. [37] S. Zhou and G. B. Giannakis, “Optimal transmitter eigen-beamforming and space-time block coding based on channel correlations,” IEEE Trans. Inform. Theory, vol. 49, no. 7, pp. 1673-1690, July 2003. [38] C. Xu and K. S. Kwak, “On decoding algorithm and performance of space-time block codes,” IEEE Trans. Wireless Commun., vol. 4, no.3, pp. 825-829, May 2005. [39] W. Su and X-G. Xia, “Two generalized complex orthogonal space-time block codes of rates 7/11 and 3/5 for 5 and 6 transmit antennas,” IEEE Trans. Inform. Theory, vol. 49, no. 1, pp. 313-316, Jan. 2003. [40] X-B. Liang, “A complex orthogonal space-time block code for 8 transmit antennas,” IEEE Commun. Lett, vol. 9, no. 2, pp. 115-117, Feb. 2005. [41] A. D. Poularikas, The Handbook of Formulas and Tables for Signal Processing, Florida: CRC Press/IEEE Press, 1999. [42] D. Yoon, Y. Lee, C. Bae, K. Cho, and P. Cho, “Diversity analysis for QAM in Nakagami fading channels,” in Proc. 13th IEEE Int. Symposium on Personal, Indoor and Mobile Radio Communications, vol. 4, Daejeon Univ., South Korea, Sept. 2002, pp. 1737 – 1741. [43] P. K. Vitthaladevuni and M-S. Alouini, “A closed-form expression for the exact BER of generalized PAM and QAM constellations,” IEEE Trans. Commun., vol. 52, no. 5, pp. 698-700, May 2004. [44] L. Xian and H. Liu, “Exact error probability for space-time block-coded MIMO systems over Rayleigh fading channels,” IEE Proc.-Commun., vol. 152, no.2, pp.197-201, Apr. 2005. [45] H-Y. Liu and R. Y. Yen. “Error probability for orthogonal space-time block code diversity system using rectangular QAM transmission over Rayleigh fading channels,” accepted for publishing in IEEE Trans. Signal Processing (T-SP-02343-2004.R1). [46] R. Y. Yen, H-Y. Liu, and T. Liau,”MRC reception of rectangular M-ary QAM signals over frequency-flat Rayleigh fading channels with distinctive branch fading amplitudes,” accepted for publishing in IEE Proc.-Commun. (No. COM-2004-5144.R2). [47] V. A. Aalo, “Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment,” IEEE Trans. Commun., vol. 43, no. 8, pp. 2360-2369, Aug. 1995.
|