[1] R.E. Kalman, “Contributions to the theory of optimal control” , Bull.Soc. Math. Mex., vol. 5, pp. 102-119, 1960
[2] G. Zames, ”Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses”,IEEE Trans. on Automatic Control, Vol. 26,pp.301-320, 1981
[3] J. C. Doyle, K. Glover, P. P. Khargonekar and B.A.Francis, “State-Space solutions to standard H2and Hinfinity control problems”, IEEE Trans. on Automatic Control, vol.34 , pp. 831-847, 1989.
[4] S. P. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory”, SIAM Studies in Applied Mathematics, 1994
[5] J. C. Doyle, A. Packard and K. Zhou. “Review of LFTs, LMIs, and mu”, in Proc. IEEE Conf. Decision and Control ,pp. 1227-1232, 1991.
[6] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective Output- feedback Control via LMI
Optimization”, IEEE Trans on Automatic Control, vol.42, pp. 896-911, 1997.
[7] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, Manual of LMI Control Toolbox, the Math Works, Inc, 1995.
[8] T. Iwasaki and R. E. Skelton “All fixed-order Hinfinity controllers:observer- based structure and covariance bounds”, IEEE Trans. on Automatic Control,vol. 40, pp. 512-516, 1999.
[9] P. Gahinet and A. Ignat, “Low-order Hinfinity Synthesis via LMIs”, in Proc. American Control Conference, pp. 1499-1500, 1994.
[10] P. Gahinet and P. Apkarian, “A Linear matrix inequality approach to Hinfinity control ”, Int. J. Robust Nonlinear Control, vol.4, pp. 421-448, 1994.
[11] P. Gahinet and P. Apkarian, “An LMI-based Parameterization of all Hinfinity Controllers with Applications”, in Proc. IEEE Conf. Decision and Control , San Antonio, Texas, pp. 656-661, 1993.
[12] K. M. Grigoriadis and R. E. Skelton, “Fixed-order Control Design for LMI Control Problems Using Alternating Projection Methods”, in Proc. IEEE Conf. Decision and Control, pp. 2003-2008, 1994.
[13] C. E. de Souza and U. Shaked , “An LMI Method for Output-feedback Hinfinity Control Design for System with Real Parameter Uncertainty”, in Proc. IEEE Conf. Decision and Control, Tampa, Florida USA, pp. 1777-1779, 1998.
[14] Y. S. Chou, K.C. Hsieh and C.M. Chuang, “Fixed-order Hinfinity Controller Design for LTI SISO Systems” International Conference on Informatics, Cybernetics, and Systems, pp. 1724-1729, Dec 2003
[15] 謝坤志,降階輸出迴授控制器之設計,淡江大學電機工程研究所碩士論文,民93年。[16] Y.S. Chou, Y.C. Chu and C.C. Ho, “Design of Reduced-order Hinfinity Controllers for Weighted Sensitivity Minimization Problem” CACS Automatic Control Conference, Nov 2005
[17] Y. S. Chou, K. C. Hsieh, Y. C. Chu, C. C. Ho and T. H. Li, A Unified Approach to Reduced-Order H2 Output Feedback Controller Design, to appear in Tamkang Journal of Science and Engineering, 2006
[18] K. Zhou and J. C. Doyle, Essentials of Robust Control, Prentice Hall, 1998.
[19] 楊憲東和葉芳栢,線性與非線性Hinfinity控制理論,全華科技圖書股份有限公司,民86年
[20] C. A. R. Crusius and A. Trofino, “Sufficient LMI Conditions for Output Feedback Control Problems”, IEEE Trans. on Automatic Control, pp. 1053-1057, 1999.