跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/20 07:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝家倫
研究生(外文):Chia-Lun Hsieh
論文名稱:奈米氫化鈦對植體表面生成奈米多孔性二氧化鈦之影響研究
論文名稱(外文):Effect of nano-titanium hydride on the formation of nanoporous titanium oxide (NTO) layer on implant
指導教授:歐耿良李勝揚李勝揚引用關係
指導教授(外文):Keng-Liang OuSheng-Yang Lee
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:口腔科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:70
中文關鍵詞:陰極處理陽極處理奈米多孔性二氧化鈦
外文關鍵詞:cathodic treatmentanodic treatmentnanoporous titanium oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:166
  • 收藏至我的研究室書目清單書目收藏:0
諸多研究顯示,鈦基金屬及其合金於人體的生物相容性(biocompatibility)有極高的評價,其非常適合做為人體的植入物,然而鈦金屬及其合金之所以具極佳的生物相容性主要是與鈦金屬表面的氧化層有關,研究指出植體表面氧化層厚度與孔徑大小對於細胞初始的攀附行為、增殖及分化有密切的關係。若能有效增加氧化層厚度與降低植體表面孔徑尺寸將對骨整合會有所助益。於文獻指出氫化鈦是形成網狀奈米多孔性氧化層結構主要因子,並且能有效增加氧化層厚度。因此,本研究以電化學陰極處理方式使鈦基金屬表層形成一層氫化鈦(TiH2)薄膜,再以電化學陽極處理,使表面形成一層網狀奈米多孔性的二氧化鈦(TiO2)結構,並以一些物理及化學性的分析儀器測試表面之成分、元素、膜厚、孔洞大小及結構,進一步進行細胞實驗並探討網狀奈米多孔性的二氧化鈦的形成機制。
Titanium-based alloys with excellent biocompatibility have been investigated by many researches. It is due to its passive oxide film. The surface characteristics of titanium implant, such as pore sizes/roughness, oxide thickness are related to initial cell behaviors and osseointegration. It seems to be helpful to osseointegration if can effectively keep the oxidation in nanoporous and increase oxide thickness. Based on this study, in order to get the thick oxidation and the minimum pore size, the titanium hydride is the main factor in forming thick nanoporous titanium oxide structure. The present electrochemiscal process was performed as surface treatment of titanium-based implant. Titanium hydride (TiH2) was formed on titanium implant surface after cathodic treatment. Nanoporous titanium oxide structure was formed by anodic surface treatment. As the mention above, physical properties, chemical properties as well as biocompatibility of titanium implant with and without electrochemical treatments were analyzed clearly. Furthermore, mechanism of bone healing on nanoporous implant surface and interaction were also discussed clearly.
Contents……………………………………………………………………………1
Table captions……………………………………………………………………...2
Figure captions…………………………………………………………………….3
中文摘要…………………………………………………………………………...5
Abstract……………………………………………………………………………6
Chapter 1 Introduction………………………………………………...................7
1.1 General background…………………….………………………..7
1.2 Motivation of this study……………….…………………………8
1.3 Purpose of this study................................................................9
1.4 Hypothesis of this study……..…………………………………9
1.5 Organization of the thesis………………………………………10
Chapter 2 Literature Review…………...……………………………………….11
2.1 Property of titanium-base alloys………….....…………………11
2.2 Osseointegration of titanium implants…......………………….12
2.3 Osseointegration of titanium oxide layer property...................13
2.4 Contact of boneimplant with and without surface treatment..14
Chapter 3 Experimental Procedure…………...………………………………..17
3.1 Titanium implant preparation………………………………….17
3.2 Physical and chemical properties of dental implant with and without surface treatments...…………….…..…………………18
Chapter 4 Results and Discussion...............................................................24
Chapter 5 Conclusion.................................................................................31
Reference…………………………………………………………………………32
1.B. Friberg, K. Grondahl, U. Lekholm, and P. I. Brånemark, Clin. Implant Dent. Relat. Res., 2, 184 (2000).
2.B. Kasemo, and J. Lausmaa, Swed. Dent. J. Suppl., 28, 19 (1985).
3.H. M. Kim, T. Kokubo, S. Fujibayashi, S. Nishiguchi, and T. Nakamura, J. Biomed. Mater. Res., 52, 553 (2000).
4.S. I. Tanaka, M. Aonuma, N. Hirose, and T. Tanakib, J. Electrochem. Soc., 149, 167 (2002).
5.S. I. Tanaka, M. Aonuma, N. Hirose, and T. Tanakib, J. Electrochem. Soc., 149, 186 (2002).
6.R. W. Schutz, and L. W. Covington, Corrosion, 37, 585 (1981).
7.R. W. Schutz, Materials performance, 30, 58 (1991).
8.P. I. Brånemark, U. Breine, R. Adell, and B. O. Hansson, Scand. J. Plast. Reconstr. Surg., 3, 81 (1969).
9.A. Schroeder, O. Pohler, and F. Sutter, SSO Schweiz Monatsschr Zahnheilkd, 86, 713 (1976).
10.P. I. Brånemark, B. O. Hansson, R. Adell, U. Breine, J. Lindstrom, O. Hallen and A. Omann, Scand. J. Plast. Reconstr. Surg. Suppl., 16, 1 (1977).
11.A. Schroeder, H. Stich, F. Straumann, and F. Sutter, SSO Schweiz Monatsschr Zahnheilkd, 88, 1051 (1978).
12.A. Schroeder, E. Van Der Zypen, H. Stich, and F. Sutter, J. Maxillofac Surg, 9, 15 (1981).
13.R. Adell, U. Lekholm, B. Rockler, and P. I. Brånemark, Int. J. Oral Surg., 10, 387 (1981).
14.D. Buser, H. P. Weber, and N. P. Lang, Clin. Oral Implants Res., 1, 33 (1990).
15.D. Buser, F. Sutter, H. P. Weber, U. Belser, and A. Schroeder, “The ITI dental implant system. Basics, clinical indications and procedures, results.”, In: Hardin J Clark’s Clinical Dentitry, Philadelphia: Lippincott, 5: 1 (1992).
16.G. A. Zarb and A. Schnitt, Int. J. Prosthodont., 6, 180 (1993).
17.D. M. Brunette, G. S. Kenner and T. R. Gould, J. Dent. Res., 62: 1045 (1983).
18.B. Chehroudi, T. R. Gould, and D. M Brunette., J. Biomed. Mater. Res., 24, 1203 (1990).
19.J. Y. Martin, Z. Schwartz, T. W. Hummert, D. M. Schraub, J. Simpson, J. Jr. Lankford, D. D. Dean, D. L. Cochran, and B. D. Boyan, J. Biomed. Mater. Res., 29, 389 (1995).
20.M. Wong, J. Eulenberger, Schenk R. and E. Hunziker, J. Biomed. Mater. Res., 29, 1567 (1995).
21.Z. Schwartz J. Y. Martin D. D. Dean, J. Simpson, D. L. Cochran, and B. D. Boyan, J. Biomed. Mater. Res., 30, 145 (1996).
22.R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, and P. F. Nealey, Biomaterials, 20, 573 (1999).
23.D. D. Deligianni, N. Katsala, P. G. Koutsoukos, and Y. F. Missirlis, Biomaterials, 22, 87 (2001).
24.D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. F. Missirlis, Biomaterials, 22, 1241 (2001).
25.S. G. Steinemenn, J. Eulenberger, P. A. Maeusli, and A. Schroeder, Adhesion of bone to titanium. In: Christel P. Meunier A. Lee AJC. Biomechanical Performance of Biomaterials. Amsterda Elsevier, 409 (1986).
26.R. Brånemark, A Biomechanical Study of Osseointegration. (Thesis). Goteborg. Sweden: Goteborg University (1996).
27.K. Gotfredsen, A. Wennerberg, C. Johansson, L. T. Skovgaard, and E. Hjorting-Hansen, J. Biomed. Mater. Res., 29, 1223 (1995).
28.A. Wennerberg, T. Albrektsson, B. Andersson, and J. J. Krol, Clin Oral Implants Res, 6, 24 (1995).
29.A. Wennerberg, T. Alkretsson, C. Johansson, and B. Andersson, Biomaterials, 17, 15 (1996).
30.A. Wennerberg, T. Alberktsson and J. Lausmaa, J. Biomed. Mater. Res., 30, 251 (1996).
31.Pillar RM., “Implant stabilization by tissue ingrowth. Proceedings of an International Congress, Brussels. May 1985.”, Excerpta Medica. Amsterdam. 60 (1986).
32.R. M. Pillar, D. A. Deporter, P. A. Watson, and N. Valiquettl, J. Biomed. Mater. Res., 25, 467 (1991).
33.A. Wennerberg, T. Alberktsson, and B. Andersson, J. Oral Maxillofac Implants, 11, 38 (1996).
34.D. M. Brunette, Int. J. Oral Maxillofac Implants, 3, 231 (1988).
35.J. E. Davies, Int. J. Prosthodont., 11, 391 (1998).
36.J.Y. Park and J.E. Davies, Clin. Oral Implants Res., 11, 530(2000).
37.C. H. Gemmell, and J. Y. Park, Initial blood interaction with endossteal implant Materials. Bone engineering, 2000, Davies J. E. em squared inc. Toronto Canada., 108 (2000).
38.J. B. Pawley, Handbook of Biological Confocal Microscopy. Plenum Press, New York, 39 (1995).
39.A. Curtis, and C. Wilkinson, Biomaterials, 18, 1573 (1997).
40.B. Kasemo, and J. Lausmaa, Environ Health Perspect, 102 Suppl 5, 41 (1994).
41.M. E. McAlarney M. A.Oshiro, and C. V. McAlarney, Int. J. Oral Maxillofac Implants, 11, 73 (1996).
42.D. Buser, R. K. Schenk, S. Steinemann, J. P. Fiorellini, C. H. Fox, and H. Stich, J. Biomed. Mater. Res., 25, 889 (1991).
43.A. Wennerberg, C. Hallgren, C. Johansson, and S. Danelli, Clin. Oral Implants Res., 9, 11 (1998).
44.S. Vercaigne, J. G. Wolke, I. Naert and J. A. Jansen, Clin. Oral Implants Res., 9, 261 (1998).
45.B. D. Boyan, R. Batzer, K. Kieswetter, Y. Liu, D. L. Cochran, S. Szmuckler-Moncler, D.D. Dean, and Z. Schwartz, J. Biomed. Mater. Res., 39, 77 (1998).
46.J. P. Bernard, U. C. Belser, S. Szmukler, J. P. Martinet, A. Attieh, and P. J. Saad, “3-year success rates of Short ITI implants in posterior jaws.”, Medecine Buccale et Ctiirurgie Buccale, 1, 11 (1995).
47.K. Kieswetter, Z. Schwartz, T.W. Hummert, D. L. Cochran, J. Simpson, D. D. Dean, and B. D. Boyan, J. Biomed. Mater. Res., 32, 55 (1996).
48.Y. T. Sul, C. B. Johansson, Y. Jeong, A. Wennerberg, and T. Albrektsson, Clin. Oral Implants Res., 13, 252 (2002).
49.B. Feng, J. Y. Chen, S. K. Qi, L. He, J. Z. Zhao, and X. D. Zhang, J. Mater. Sci. Mater. Med., 13, 457 (2002).
50.H. M. Kim, F. Miyaji, T. Kokubo, S. Nishiguchi and T. Nakamura, J. Biomed. Mater. Res., 45, 100 (1999).
51.M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, T. Nakamura, Biomaterials, 26, 6014 (2005).
52.H. B. Wen, Q. Liu, J. R. De Wijn, K. De Groot, and F. Z.Cui, J. Mater. Sci. Mater. Med., 9, 121 (1998).
53.S. Fujibayashi, T. Nakamura, S. Nishiguchi, J. Tamura, M. Uchida, H. M. Kim, and T. Kokubo, J. Biomed. Mater. Res., 56, 562 (2001).
54.B. Kasemo and J. Lausmaa, Environ Health Perspect, 102 Suppl 5, 41 (1994).
55.J. R. Goldberg, and J. L. Gilbert, Biomaterials, 25, 851 (2004)
56.Y. T. Sul, C. B. Johansson, Y. Jeong and T. Albrektsson, Med. Eng. Phy., 23, 329 (2001).
57.H. M. Kim, F. Miyaji, T. Kokubo, and T. Nakamura, J. Mater. Sci. Mater. Med., 8, 341 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top