跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝昊德
研究生(外文):Hao-Te Hsieh
論文名稱:TanshinoneIIA抑制C6神經膠瘤細胞基質金屬蛋白酶-9的表現
論文名稱(外文):Tanshinone IIA inhibits matrix metalloproteinase-9 expression in C6 glioma cells.
指導教授:李宏謨李宏謨引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學技術學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:84
外文關鍵詞:HO-1iNOSMMP-9tanshinone IIAglioma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基質金屬蛋白酶(matrix metalloproteinases,MMPs)是調控神經膠瘤細胞(glioma cells)入侵能力的重要因子之ㄧ。Tanshinone IIA是從一種中藥草-丹蔘(Danshen,Radix Salvia miltiorhiza Bunge)中所純化出來的一種活性成分,對抑制腫瘤的生長和入侵有相當好的效果。本論文利用C6 glioma cells探討tanshinone IIA是否會抑制酯多醣(lipopolysaccharide;LPS)和 PMA (phorbol myristate acetate)誘導MMP-9的表現。實驗結果發現,LPS和PMA處理C6 glioma cells會增加MMP-9的蛋白量和活性,而先以tanshinone IIA處理細胞,則會抑制MMP-9的蛋白量和活性。我們也發現tanshinone IIA會增加細胞中血基質氧化酵素-1(heme oxygenase-1;HO-1)的表現,但是預先以活性氧自由基(reactive oxygen species;ROS)的抑制劑l-NAC (l-N-acetylcysteine) 和PI 3-K抑制劑(LY294002)處理細胞,則皆會抑制tanshinone IIA所誘導的HO-1表現。Tanshinone IIA也會增加Akt/PKB的磷酸化,而且tanshinone IIA所增加的Akt/PKB磷酸化會被l-NAC所減少。接下來以SnPP (tin protoporphyrin)去抑制HO-1表現,發現可以減輕tanshinone IIA抑制MMP-9的蛋白量和活性,顯示HO-1在此抑制效應中扮演關鍵的角色。因為HO-1可催化一氧化碳(CO)的產生,而以CO donor (tricarbonyl dichlororuthenium (Ⅱ) dimer)處理細胞,則可以抑制誘導型一氧化碳合成酶(iNOS)和MMP-9的表現,反之,以CO清除劑血紅素(hemoglobin)處理細胞,則會減輕tanshinone IIA對MMP-9的抑制作用。由於NOS的抑制劑l-NAME會抑制LPS和PMA誘導MMP-9的蛋白量和活性,很可能tanshinone IIA是透過誘導HO-1表現而達到抑制MMP-9的效果,使HO-1催化CO產生,導致iNOS被抑制,進而減少MMP-9的蛋白量和活性。
Matrix metalloproteinases (MMPs) have been implicated as important factors in the control of the invasive capability of glioma cells. Tanshinone IIA, an active ingredient purified from the Chinese herb Danshen (Radix Salvia miltiorhiza Bunge), is known to exhibit potent effects on tumor progression and invasion. In the present study, we investigated whether tanshinone IIA inhibits LPS (lipopolysaccharide) and PMA (phorbol 12-myristate 13-acetate)-induced MMP-9 gene expression in C6 glioma cells. Treatment of C6 glioma cells with LPS and PMA increased the MMP-9 expression and the expression was inhibited by pretreatment of cells with tanshinone IIA at a concentration that is not toxic to C6 glioma cells. Incubation of C6 glioma cells with tanshinone IIA increased heme oxygenase-1 (HO-1) expression, which was inhibited by pretreatment of cells with l-N-acetylcysteine (l-NAC) prior to addition of tanshinone IIA, suggesting reactive oxygen species (ROS) are involved. Inhibition of PI 3-K/Akt pathway by LY294002 or wortmannin reduced the HO-1 protein expression by tanshinone IIA. In agreement, treatment of cells with tanshinone IIA increased phosphorylation of Akt/PKB, which was attenuated by l-Nac suggesting activation of PI3-kinase–Akt is secondary to ROS production. The inhibition of MMP-9 expression by tanshinone IIA was reversed by tin protoporphyrin (SnPP) suggesting tanshinone IIA may exert this inhibitory effect through HO-1. Increase of HO-1 expression catalyzes carbon monoxide (CO) production. Addition of CO donor mimicked the tanshinone IIA effect on suppressing inducible nitrite oxygen synthease (iNOS) and MMP-9 expression. Scavenge of CO by hemoglobin (Hb) reversed the inhibition due to tanshinone IIA. Inhibition of nitric oxide (NO) production by l-NAME inhibited MMP-9 expression due to tanshinone IIA. Taken together, these results suggest that tanshinone IIA exerts its inhibitory effect through induction of HO-1 expression. HO-1 catalyzes the formation of CO, which in turn inhibit iNOS induction. Inhibition of iNOS expression subsequently reduces the MMP-9 protein level and activity.
目錄

中文摘要 I
Abstract III
目錄 V
圖目錄 VII
縮寫表 X

壹、 緒論 1
一、 腦瘤(Brain Tumor) 2
二、 丹蔘酮(Tanshinones) 3
三、 血紅素氧化酵素(Heme Oxygenases;HOs) 5
四、 活性氧自由基(Reactive Oxygen Species;ROS) 6
五、 Phosphatidylinositol 3-kinase (PI 3-K) pathway 7
六、 Nuclear factor-erythroid 2 (NF-E2) 8
七、 一氧化氮合成酶(Nitric Oxide Synthase;NOS) 9
八、 基質金屬蛋白酶(Matrix Metalloproteinases;MMPs) 10

貳、 實驗材料與方法 13
一、 實驗材料 13
1、 藥品試劑 13
2、 常用儀器 15
3、 常用溶液 17
4、 電泳酵素分析法(gelatine zymography) buffer 18
5、 C6神經膠瘤細胞株(C6 glioma cell line) 19
6、 中草藥tanshinone IIA(化學結構式如下) 19

二、 實驗方法 20
1、 C6神經膠瘤細胞株(C6 glioma cell line)繼代培養 20
2、 細胞存活率試驗(cell viability) 20
a. 細胞計數法: 20
b. PI染色法: 21
3、 細胞蛋白質的測定 22
4、 流式細胞儀分析 23
a. 細胞處理 23
b. 活性氧自由族(ROS)的測量 23
5、 細胞RNA萃取(preparation of cell RNA) 24
6、 聚合酵素鏈鎖反應(reverse transcriptase-polymerase chain reaction;RT-PCR) 25
7、 電泳酵素分析法 27
8、 統計分析 27

參、 實驗結果 28
一、 Tanshinone IIA影響LPS和PMA誘導C6 glioma cells MMP-9的量和活性 28
二、 Tanshinone IIA誘導C6 glioma cells HO-1的基因表現 28
三、 ROS在tanshinone IIA誘導HO-1表現中扮演的角色 29
四、 Tanshinone IIA誘導HO-1表現的訊息傳遞路徑 30
五、 HO-1在tanshinone IIA抑制LPS和PMA所誘導的MMP-9中所扮演的角色 32
六、 iNOS在tanshinone IIA抑制MMP-9所扮演的角色 33

肆、 討論 34

伍、 參考文獻 38
圖目錄

Fig. 1. Effects of tanshinone IIA on cell viability in C6 glioma cells. 46

Fig. 2. Effects of tanshinone IIA on cell cycle progression in C6 glioma cells. 47

Fig. 3. Tanshinone IIA inhibited LPS and PMA-induced iNOS and MMP-9 expression. 48

Fig. 4. Tanshinone IIA induced a dose dependent increase in HO-1 protein expression in C6 glioma cells. 49

Fig. 5. Tanshinone IIA induced a time dependent increase in HO-1 protein expression in C6 glioma cells. 50

Fig. 6. Effects of actinomycin D (Act D) and cycloheximide (CHX) on tanshinone IIA-induced HO-1 expression in C6 glioma cells. 51

Fig. 7. Effects of actinomycin D (Act D) and cycloheximide (CHX) on tanshinone IIA-induced HO-1 mRNA expression in C6 glioma cells. 52

Fig. 8. Tanshinone IIA induced a dose dependent increase in HO-1 mRNA expression in C6 glioma cells. 53

Fig. 9. Tanshinone IIA induced a time dependent increase in HO-1 mRNA expression in C6 glioma cells. 54

Fig. 10. Effects of l-NAC and BSO on tanshinone IIA-induced HO-1 expression in C6 glioma cells. 55

Fig. 11. Tanshinone IIA induced ROS generation in C6 glioma cells. 56


Fig. 12. Effects of mitochondrial complex I inhibitor on tanshinone IIA-induced HO-1 expression in C6 glioma cells. 57

Fig. 13. Effects of mitochondrial complex III inhibitor on tanshinone IIA-induced HO-1 expression in C6 glioma cells. 58

Fig. 14. Effects of mitochondrial complex IV inhibitor on tanshinone IIA-induced HO-1 expression in C6 glioma cells. 59

Fig. 15. Effects of PI 3-K inhibitor on tanshinone IIA-induced HO-1 expression in C6 glioma cells. 60

Fig. 16. Effects of PI 3-K inhibitor on tanshinone IIA-induced HO-1 expression in C6 glioma cells. 61

Fig. 17. Tanshinone IIA induced PDK-1 phosphorylation in C6 glioma cells. 62

Fig. 18. Tanshinone IIA induced Akt phosphorylation in C6 glioma cells. 63

Fig. 19. Effects of l-NAC on tanshinone IIA-induced Akt phosphorylation in C6 glioma cells. 64

Fig. 20. Effects of p38 MAPK inhibitor on tanshinone IIA-induced HO-1 expression in C6 glioma cells. 65

Fig. 21. Effects of MAP kinase and NF-B inhibitors on tanshinone IIA-induced HO-1 expression in C6 glioma cells. 66

Fig. 22. HO-1 mediates the inhibition of LPS and PMA-induced MMP-9 protein and activity in C6 glioma cells following treatment with tanshinone IIA. 67

Fig. 23. CO donor inhibited LPS and PMA-induced MMP-9 protein and activity. 68


Fig. 24. CO mediates the inhibition of LPS and PMA-induced MMP-9 protein and activity in C6 glioma cells following treatment with tanshinone IIA. 69

Fig. 25. HO-1 mediates the inhibition of LPS and PMA-induced iNOS expression in C6 glioma cells following treatment with tanshinone IIA. 70

Fig. 26. NO mediates the inhibition of LPS and PMA-induced MMP-9 protein and activity in C6 glioma cells. 71

Fig. 27. Schematic illustration of signal transduction mechanism of tanshinone IIA-inhibited MMP-9 expression in C6 glioma cells. 72
Alam, J., Killeen, E., Gong, P., Naquin, R., Hu, B., Stewart, D., Ingelfinger, J. R., and Nath, K. A. (2003). Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2. Am J Physiol Renal Physiol 284, F743-752.
Bauer, M., and Bauer, I. (2002). Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress. Antioxid Redox Signal 4, 749-758.
Berlett, B. S., and Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272, 20313-20316.
Cao, E. H., Liu, X. Q., Wang, J. J., and Xu, N. F. (1996). Effect of natural antioxidant tanshinone II-A on DNA damage by lipid peroxidation in liver cells. Free Radic Biol Med 20, 801-806.
Chan, J. Y., and Kwong, M. (2000). Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim Biophys Acta 1517, 19-26.
Cheng, Y., Dong, Q., Sun, L. R., Yang, C. M., and Jiang, B. X. (2005). [Correlation between expression of MMP-2, MMP-9, TIMP-2, TIMP-1 and metastasis of neuroblastoma]. Zhonghua Zhong Liu Za Zhi 27, 164-166.
Chintala, S. K., Tonn, J. C., and Rao, J. S. (1999). Matrix metalloproteinases and their biological function in human gliomas. Int J Dev Neurosci 17, 495-502.
Curran, S., and Murray, G. I. (1999). Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 189, 300-308.
Curran, S., and Murray, G. I. (2000). Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer 36, 1621-1630.
Desagher, S., and Martinou, J. C. (2000). Mitochondria as the central control point of apoptosis. Trends Cell Biol 10, 369-377.
Eberhardt, W., Akool el, S., Rebhan, J., Frank, S., Beck, K. F., Franzen, R., Hamada, F. M., and Pfeilschifter, J. (2002). Inhibition of cytokine-induced matrix metalloproteinase 9 expression by peroxisome proliferator-activated receptor alpha agonists is indirect and due to a NO-mediated reduction of mRNA stability. J Biol Chem 277, 33518-33528.

Fidler, I. J. (2002). The organ microenvironment and cancer metastasis. Differentiation 70, 498-505.
Franke, T. F., Kaplan, D. R., and Cantley, L. C. (1997). PI3K: downstream AKTion blocks apoptosis. Cell 88, 435-437.
Giordano, F. J. (2005). Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115, 500-508.
Hayes, J. D., and McMahon, M. (2001). Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Lett 174, 103-113.
Hazra, B., Das Sarma, M., and Sanyal, U. (2004). Separation methods of quinonoid constituents of plants used in Oriental traditional medicines. J Chromatogr B Analyt Technol Biomed Life Sci 812, 259-275.
Hiles, I. D., Otsu, M., Volinia, S., Fry, M. J., Gout, I., Dhand, R., Panayotou, G., Ruiz-Larrea, F., Thompson, A., Totty, N. F., and et al. (1992). Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70, 419-429.
Huang, H. C., Nguyen, T., and Pickett, C. B. (2000). Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc Natl Acad Sci U S A 97, 12475-12480.
Ishikawa, K., Navab, M., Leitinger, N., Fogelman, A. M., and Lusis, A. J. (1997). Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL. J Clin Invest 100, 1209-1216.
Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D., and Yamamoto, M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13, 76-86.
Jadeski, L. C., Hum, K. O., Chakraborty, C., and Lala, P. K. (2000). Nitric oxide promotes murine mammary tumour growth and metastasis by stimulating tumour cell migration, invasiveness and angiogenesis. Int J Cancer 86, 30-39.
Jang, S. I., Jeong, S. I., Kim, K. J., Kim, H. J., Yu, H. H., Park, R., Kim, H. M., and You, Y. O. (2003). Tanshinone IIA from Salvia miltiorrhiza inhibits inducible nitric oxide synthase expression and production of TNF-alpha, IL-1beta and IL-6 in activated RAW 264.7 cells. Planta Med 69, 1057-1059.
Jiang, B. H., Aoki, M., Zheng, J. Z., Li, J., and Vogt, P. K. (1999). Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc Natl Acad Sci U S A 96, 2077-2081.
Kagiya, G., Ogawa, R., Tabuchi, Y., Feril, L. B., Jr., Nozaki, T., Fukuda, S., Yamamoto, K., and Kondo, T. (2006). Expression of heme oxygenase-1 due to intracellular reactive oxygen species induced by ultrasound. Ultrason Sonochem 13, 388-396.
Keyse, S. M., and Tyrrell, R. M. (1989). Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A 86, 99-103.
Kietzmann, T., Samoylenko, A., and Immenschuh, S. (2003). Transcriptional regulation of heme oxygenase-1 gene expression by MAP kinases of the JNK and p38 pathways in primary cultures of rat hepatocytes. J Biol Chem 278, 17927-17936.
Kim, H. H., Kim, J. H., Kwak, H. B., Huang, H., Han, S. H., Ha, H., Lee, S. W., Woo, E. R., and Lee, Z. H. (2004). Inhibition of osteoclast differentiation and bone resorption by tanshinone IIA isolated from Salvia miltiorrhiza Bunge. Biochem Pharmacol 67, 1647-1656.
Kobayashi, A., Ito, E., Toki, T., Kogame, K., Takahashi, S., Igarashi, K., Hayashi, N., and Yamamoto, M. (1999). Molecular cloning and functional characterization of a new Cap'n' collar family transcription factor Nrf3. J Biol Chem 274, 6443-6452.
Kondraganti, S., Mohanam, S., Chintala, S. K., Kin, Y., Jasti, S. L., Nirmala, C., Lakka, S. S., Adachi, Y., Kyritsis, A. P., Ali-Osman, F., et al. (2000). Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res 60, 6851-6855.
Liu, Y., and Wang, X. (2003). [Protective effects of tanshinone IIA on injured primary cultured rat hepatocytes induced by CCl4]. Zhong Yao Cai 26, 415-417.
Loske, C., Neumann, A., Cunningham, A. M., Nichol, K., Schinzel, R., Riederer, P., and Munch, G. (1998). Cytotoxicity of advanced glycation endproducts is mediated by oxidative stress. J Neural Transm 105, 1005-1015.


Maines, M. D., Trakshel, G. M., and Kutty, R. K. (1986). Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J Biol Chem 261, 411-419.
Marcet-Palacios, M., Graham, K., Cass, C., Befus, A. D., Mayers, I., and Radomski, M. W. (2003). Nitric oxide and cyclic GMP increase the expression of matrix metalloproteinase-9 in vascular smooth muscle. J Pharmacol Exp Ther 307, 429-436.
Martin, D., Rojo, A. I., Salinas, M., Diaz, R., Gallardo, G., Alam, J., De Galarreta, C. M., and Cuadrado, A. (2004). Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279, 8919-8929.
McCoubrey, W. K., Jr., Huang, T. J., and Maines, M. D. (1997). Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247, 725-732.
Morse, D., Pischke, S. E., Zhou, Z., Davis, R. J., Flavell, R. A., Loop, T., Otterbein, S. L., Otterbein, L. E., and Choi, A. M. (2003). Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem 278, 36993-36998.
Motterlini, R., Foresti, R., Bassi, R., Calabrese, V., Clark, J. E., and Green, C. J. (2000). Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-oxide synthase and S-nitrosothiols. J Biol Chem 275, 13613-13620.
Nelson, K. K., and Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37, 768-784.
Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S., and Pickett, C. B. (2003a). Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J Biol Chem 278, 4536-4541.
Nguyen, T., Sherratt, P. J., and Pickett, C. B. (2003b). Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43, 233-260.


Niu, X. L., Ichimori, K., Yang, X., Hirota, Y., Hoshiai, K., Li, M., and Nakazawa, H. (2000). Tanshinone II-A inhibits low density lipoprotein oxidation in vitro. Free Radic Res 33, 305-312.
Nordberg, G. (2001). Chapter 8. General environmental factors and health. Health in Sweden: The National Public Health Report 2001. Scand J Public Health Suppl 58, 185-198.
Orucevic, A., Bechberger, J., Green, A. M., Shapiro, R. A., Billiar, T. R., and Lala, P. K. (1999). Nitric-oxide production by murine mammary adenocarcinoma cells promotes tumor-cell invasiveness. Int J Cancer 81, 889-896.
Otsu, M., Hiles, I., Gout, I., Fry, M. J., Ruiz-Larrea, F., Panayotou, G., Thompson, A., Dhand, R., Hsuan, J., Totty, N., and et al. (1991). Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 65, 91-104.
Otterbein, L. E., and Choi, A. M. (2000). Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 279, L1029-1037.
Ouyang, X., Takahashi, K., Komatsu, K., Nakamura, N., Hattori, M., Baba, A., and Azuma, J. (2001). Protective effect of Salvia miltiorrhiza on angiotensin II-induced hypertrophic responses in neonatal rat cardiac cells. Jpn J Pharmacol 87, 289-296.
Pereira, M. P., Hurtado, O., Cardenas, A., Alonso-Escolano, D., Bosca, L., Vivancos, J., Nombela, F., Leza, J. C., Lorenzo, P., Lizasoain, I., and Moro, M. A. (2005). The nonthiazolidinedione PPARgamma agonist L-796,449 is neuroprotective in experimental stroke. J Neuropathol Exp Neurol 64, 797-805.
Phuong, L. K., Allen, C., Peng, K. W., Giannini, C., Greiner, S., TenEyck, C. J., Mishra, P. K., Macura, S. I., Russell, S. J., and Galanis, E. C. (2003). Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 63, 2462-2469.
Rameh, L. E., Rhee, S. G., Spokes, K., Kazlauskas, A., Cantley, L. C., and Cantley, L. G. (1998). Phosphoinositide 3-kinase regulates phospholipase Cgamma-mediated calcium signaling. J Biol Chem 273, 23750-23757.

Ren, Y., Houghton, P. J., Hider, R. C., and Howes, M. J. (2004). Novel diterpenoid acetylcholinesterase inhibitors from Salvia miltiorhiza. Planta Med 70, 201-204.
Rizzardini, M., Terao, M., Falciani, F., and Cantoni, L. (1993). Cytokine induction of haem oxygenase mRNA in mouse liver. Interleukin 1 transcriptionally activates the haem oxygenase gene. Biochem J 290 ( Pt 2), 343-347.
Rofstad, E. K. (2000). Microenvironment-induced cancer metastasis. Int J Radiat Biol 76, 589-605.
Ryter, S. W., and Choi, A. M. (2002). Heme oxygenase-1: molecular mechanisms of gene expression in oxygen-related stress. Antioxid Redox Signal 4, 625-632.
Sabbatini, P., and McCormick, F. (1999). Phosphoinositide 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis. J Biol Chem 274, 24263-24269.
Sairafianpour, M., Christensen, J., Staerk, D., Budnik, B. A., Kharazmi, A., Bagherzadeh, K., and Jaroszewski, J. W. (2001). Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1,2-quinones from Perovskia abrotanoides: new source of tanshinones. J Nat Prod 64, 1398-1403.
Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., and Seiki, M. (1994). A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61-65.
Scapagnini, G., Foresti, R., Calabrese, V., Giuffrida Stella, A. M., Green, C. J., and Motterlini, R. (2002). Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol Pharmacol 61, 554-561.
Scivittaro, V., Ganz, M. B., and Weiss, M. F. (2000). AGEs induce oxidative stress and activate protein kinase C-beta(II) in neonatal mesangial cells. Am J Physiol Renal Physiol 278, F676-683.
Shepherd, P. R., Withers, D. J., and Siddle, K. (1998). Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 333 ( Pt 3), 471-490.




Skolnik, E. Y., Margolis, B., Mohammadi, M., Lowenstein, E., Fischer, R., Drepps, A., Ullrich, A., and Schlessinger, J. (1991). Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65, 83-90.
Sun, M. H., Han, X. C., Jia, M. K., Jiang, W. D., Wang, M., Zhang, H., Han, G., and Jiang, Y. (2005). Expressions of inducible nitric oxide synthase and matrix metalloproteinase-9 and their effects on angiogenesis and progression of hepatocellular carcinoma. World J Gastroenterol 11, 5931-5937.
Sung, H. J., Choi, S. M., Yoon, Y., and An, K. S. (1999). Tanshinone IIA, an ingredient of Salvia miltiorrhiza BUNGE, induces apoptosis in human leukemia cell lines through the activation of caspase-3. Exp Mol Med 31, 174-178.
Takeo, S., Tanonaka, K., Hirai, K., Kawaguchi, K., Ogawa, M., Yagi, A., and Fujimoto, K. (1990). Beneficial effect of tan-shen, an extract from the root of Salvia, on post-hypoxic recovery of cardiac contractile force. Biochem Pharmacol 40, 1137-1143.
Terry, C. M., Clikeman, J. A., Hoidal, J. R., and Callahan, K. S. (1999). TNF-alpha and IL-1alpha induce heme oxygenase-1 via protein kinase C, Ca2+, and phospholipase A2 in endothelial cells. Am J Physiol 276, H1493-1501.
Tezuka, Y., Kasimu, R., Basnet, P., Namba, T., and Kadota, S. (1997). Aldose reductase inhibitory constituents of the root of Salvia miltiorhiza Bunge. Chem Pharm Bull (Tokyo) 45, 1306-1311.
Wang, X., Wei, Y., Yuan, S., Liu, G., Lu, Y., Zhang, J., and Wang, W. (2005). Potential anticancer activity of tanshinone IIA against human breast cancer. Int J Cancer 116, 799-807.
Willis, D., Moore, A. R., Frederick, R., and Willoughby, D. A. (1996). Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med 2, 87-90.
Wu, C. C., Hsu, M. C., Hsieh, C. W., Lin, J. B., Lai, P. H., and Wung, B. S. (2006). Upregulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways. Life Sci 78, 2889-2897.
Wu, W. L., Chang, W. L., and Chen, C. F. (1991). Cytotoxic activities of tanshinones against human carcinoma cell lines. Am J Chin Med 19, 207-216.
Zhou, G., Jiang, W., Zhao, Y., Ma, G., Xin, W., Yin, J., and Zhao, B. (2003). Sodium tanshinone IIA sulfonate mediates electron transfer reaction in rat heart mitochondria. Biochem Pharmacol 65, 51-57.
Zhou, G. Y., Zhao, B. L., Hou, J. W., Ma, G. E., and Xin, W. J. (1999). Protective effects of sodium tanshinone IIA sulphonate against adriamycin-induced lipid peroxidation in mice hearts in vivo and in vitro. Pharmacol Res 40, 487-491.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top