跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 20:11
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

 
twitterline
Author:王美琳
Author (Eng.):Wang Mei Lin
Title:十字花科蔬菜衍生物對Lipopolysaccharide活化巨噬細胞所誘導之血管新生作用的影響
Title (Eng.):Effects of cruciferous vegetable derivatives in lipopolysaccharide activated macrophage induced angiogenesis
Advisor:陳玉華陳玉華 author reflink
advisor (eng):Chen Yue Hwa
degree:Master
Institution:臺北醫學大學
Department:保健營養學系
Narrow Field:醫藥衛生學門
Detailed Field:營養學類
Types of papers:Academic thesis/ dissertation
Publication Year:2006
Graduated Academic Year:94
language:Chinese
number of pages:133
keyword (chi):十字花科蔬菜衍生物血管新生巨噬細胞血管內皮細胞共同培養一氧化氮
keyword (eng):cruciferous vegetable derivativeangiogenesismacrophagesvascular endothelial cellsco-culturenitrite
Ncl record status:
  • Cited Cited :1
  • HitsHits:377
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:93
  • gshot_favorites title msgFav:2
本研究主要探討十字花科蔬菜衍生物benzyl isothiocyanate (BITC) 、phenylethyl isothiocyanate (PEITC) 與indole-3-carbinol (I3C) 對於活化巨噬細胞所誘導之血管內皮細胞血管新生之影響。將細菌內毒素lipopolysaccharide (LPS) 加入巨噬與血管內皮共同培養之細胞顯示,以Greiss reagent 所測得培養液中一氧化氮之生成與以matrigel 所分析之血管內皮細胞類血管生成皆有增加的現象,而BITC、PEITC與I3C的添加則可抑制NO與類血管的生成。為探討此抑制之作用 是否因影響巨噬細胞之故,因而使用LPS與BITC、PEITC或I3C共同處理之巨噬細胞condition medium (Co-BITC-CM, Co-PEITC-CM, Co-I3C-CM) 投予血管內皮細胞,結果指Co-BITC-CM, Co-PEITC-CM與Co-I3C-CM中含較低濃度之一氧化氮,且Co-I3C-CM可抑制血管內皮細胞之類血管生成的作用,且此抑制伴隨著較低血管內皮生長因子vascular endothelial growth factor (VEGF)的釋放與較低基質金屬蛋白酶MMP-9 (matrix metalloproteinase-9) 活性,此外投與NO抑制劑L-NAME亦有相類似之結果。然而Co-BITC-CM與Co-PEITC-CM雖可抑制血管內皮細胞類血管的生成與MMP- 9的活性,反而可以促進VEGF之釋放。此外BITC、PEITC、I3C與L-NAME對於活化之血管內皮細胞影響亦被分析,因而以LPS活化巨噬細胞之condition medium (CM) 處理血管內皮細胞,並於BITC、PEITC與I3C之存在下偵測血管新生相關因子的影響。結果顯示,I3C與 L-NAME亦可抑制經CM誘導血管內皮細胞培養基內一氧化氮之生成、血管內皮細胞類血管生成、MMP- 9之活性與VEGF之分泌,而BITC與PEITC亦可抑制經CM誘導血管內皮細胞培養基內一氧化氮之生成、血管內皮細胞之類血管生成與MMP- 9之活性,但亦增加血管內皮生長因子生成。總而言之,十字花科蔬菜衍生物BITC、PEITC與I3C可同時藉由抑制LPS所誘導巨噬細胞活化,以及影響血管內皮細胞的作用而具有抗血管新生之作用,且其中I3C之抑制作用主要藉由NO之抑制,而BITC與PEITC之抑制作用則與NO無關。
The aim of this study was to investigate the roles of cruciferous vegetable derivatives, BITC (benzyl isothiocyanate), PEITC (phenylethyl isothiocyanate), and indole-3-carbinol (I3C), in activated macrophage-induced angiogenesis. After co-culturing macrophages and vascular endothelial cells, we observed that the nitric oxide (NO) production and tube formation were significantly enhanced by LPS (lipopolysaccharide), and cotreatment with BITC, PEITC, and I3C significantly inhibited such enhancement. To clarify the inhibitory roles of BITC, PEITC, and I3C on macrophages, LPS and BITC-, PEITC-, I3C-, or NO inhibitor- (Nitro-L-arginine methyl ester, L-NAME) treated macrophage condition medium was used to cultivate vascular endothelial cells. The tube formation, vascular endothelial growth factor (VEGF) secretion, and matrix metalloproteinase-9 (MMP-9) activity were suppressed by I3C and L-NAME, and tube formation and MMP-9 activity were suppressed but VEGF secretion was enhanced by BITC and PEITC in vascular endothelial cells. To understand whether BITC or PEITC or I3C or L-NAME also affected vascular endothelial cells, we used LPS-activated macrophages condition medium (CM) to treat to vascular endothelial cells. The results showed that addition of I3C and L-NAME inhibited CM-induced NO production, tube formation, VEGF secretion and, MMP-9 activity in vascular endothelial cells. BITC and PEITC inhibited CM-induced NO production, tube formation, and MMP-9 activity in vascular endothelial cells, but stimulated CM-induced VEGF secretion. In summary, we demonstrate that the cruciferous vegetable derivatives, BITC, PEITC, and I3C, not only inhibits LPS stimulated macrophage activation but also affects vascular endothelial cells to inhibit macrophage-induced angiogenesis. Additionally, the inhibitory effect of I3C is dependent upon NO production, whereas the effects of BITC and PEITC are irrelevant to NO.
目錄
中文摘要………………………………………………………………….Ⅰ
英文摘要…………………………………………………………………..Ⅲ
目錄………………………………………………………………………..Ⅷ
表目次…………………………………………………………………ⅩⅡ
圖目次…………………………………………………………………ⅩⅢ
第一章 緒論……………………………………………………………..1
第二章 文獻回顧………………………………………………………..3
第一節 十字花科蔬菜衍生物與癌症相關性……………………..3
第二節 血管新生作用……………………………………………..7
第三節 血管新生與癌症……………………………………….…15
第四節 研究動機…………………………………………………20
第三章 材料與方法……………………………………………………21
第一節 試劑………………………………………………………21
第二節 使用儀器………………………………………………....24
第三節 細胞培養…………………………………………………25
第四節 實驗流程…………………………………………………27
第五節 細胞增殖速率之分析……………………………………30
第六節 一氧化氮(NO)生成之分析………………………………31
第七節 Sodium nitrite標準曲線之分析…………………………32
第八節 血管內皮細胞生長因子(VEGF)之分析……………….33
第九節 血管內皮細胞類血管生成之分析………………………35
第十節 蛋白質定量分析…………………………………………36
第十一節 Matrix metalloproteinase zymography……………….37
第十二節 統計分析…………………………………………………39
第四章
第一節 十字花科蔬菜衍生物BITC、PEITC與I3C於共同培養   模式對一氧化氮生成之影響…………………………40
第二節 十字花科蔬菜衍生物BITC、PEITC與I3C於共同培養模式對類血管生成之影響……………………………44
第三節 十字花科蔬菜衍生物BITC、PEITC與I3C於共同培養模式對血管內皮生長因子生成之影響………………48
第四節 十字花科蔬菜衍生物BITC、PEITC與I3C於共同培養模式對基質金屬蛋白酶之影響………………………52
第五節 經十字花科蔬菜衍生物或NO抑制劑處理之活化巨噬細胞condition medium (CM) 對血管內皮細胞增生之影響………………………………………………………..56
第六節 經十字花科蔬菜衍生物或NO抑制劑處理之活化巨噬細胞condition medium (CM) 對培養基一氧化氮生成之影響……………………………………………………62
第七節  經十字花科蔬菜衍生物或NO抑制劑處理之活化巨噬細胞condition medium (CM) 對血管內皮細胞類血管生成之影響………………………………………………..67
第八節  經十字花科蔬菜衍生物或NO抑制劑處理之活化巨噬細胞condition medium (CM) 對血管內皮細胞血管內皮生長因子生成之影響…………………………………..72
第九節  經十字花科蔬菜衍生物或NO抑制劑處理之活化巨噬細胞condition medium (CM) 對血管內皮細胞基質金屬蛋白酶活性之影響……………………………………77
第十節  BITC、PEITC、I3C與NO抑制劑對於以CM處理之血管內皮細胞增生之影響………………………………..82
第十一節 BITC、PEITC、I3C與NO抑制劑對於以CM處理之血管內皮細胞一氧化氮生成之影響……………………87
第十二節 BITC、PEITC、I3C與NO抑制劑對於以CM處理之血管內皮細胞類血管生成之影響………………………92
第十三節 BITC、PEITC、I3C與NO抑制劑對於以CM處理之血管內皮細胞血管內皮生長因子生成之影響…………97
第十四節 BITC、PEITC、I3C與NO抑制劑對於以CM處理之血管內皮細胞基質金屬蛋白酶活性之影響……………102
第五章   討論………………………………………………………107
第六章   參考文獻…………………………………………………116




















表目次
表一 基質金屬蛋白酶家族的名稱、成員及受質……………………13

















圖目次
圖一 十字花科蔬菜硫代配糖體暨其衍生物…………………………5
圖二 十字花科蔬菜衍生物PEITC (A), BITC (B)與I3C (C)之結構式.6
圖三 一氧化氮合成路徑………………………………………………14
圖四 十字花科蔬菜衍生物於共同培養模式對NO生成之影響……41
圖五 十字花科蔬菜衍生物於共同培養模式對類血管生成之影響…45
圖六 十字花科蔬菜衍生物於共同培養模式對VEGF生成之影響…49
圖七 十字花科蔬菜衍生物於共同培養模式對MMP-9之影響…….53
圖八 十字花科蔬菜衍生物與L-NAME處理之活化巨噬細胞CM對血管內皮細胞增生之影響………………………………………58
圖九 十字花科蔬菜衍生物與L-NAME處理之活化巨噬細胞CM於培養基NO生成之影響…………………………………………63
圖十 十字花科蔬菜衍生物與L-NAME處理之活化巨噬細胞CM對血管內皮細胞類血管生成之影響………………………………68
圖十一 十字花科蔬菜衍生物與L-NAME處理之活化巨噬細胞CM對血管內皮細胞VEGF生成之影響………………………………73
圖十二 十字花科蔬菜衍生物與L-NAME處理之活化巨噬細胞CM對血管內皮細胞MMP-9活性之影響………………………………78
圖十三 不同濃度十字花科蔬菜衍生物與L-NAME對CM誘導之血管內皮細胞增生之影響………………………………………83
圖十四 不同濃度十字花科蔬菜衍生物與L-NAME對CM誘導之血管內皮細胞NO生成之影響………………………………………88
圖十五 不同濃度十字花科蔬菜衍生物與L-NAME對CM誘導之血管內皮細胞類血管生成之影響……………………………………93
圖十六 不同濃度十字花科蔬菜衍生物與L-NAME對CM誘導之血管內皮細胞VEGF生成之影響……………………………………98
圖十七 不同濃度十字花科蔬菜衍生物與L-NAME對CM誘導之血管內皮細胞MMP-9活性之影響…………………………………103
Adachi Y, Aoki C, Yoshio-Hoshino N, Takayama K, Curiel DT, Nishimoto N. (2006) Interleukin-6 induces both cell growth and VEGF production in malignant mesotheliomas. Int J Cancer.

Aggarwal BB and Ichikawa H (2005) Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 4(9):1201-15

Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG (2004) Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr. 134(5):1134-8.

Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W. (1998) Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest. 101(1):40-50.

Ashida ER, Johnson AR, Lipsky PE (1981) Human endothelial cell-lymphocyte interaction Endothelial cells function as accessory cells necessary for mitogen-induced human T lymphocyte activation in vitro. J Clin Invest. 67(5):1490-9.

Babaei S, Teichert-Kuliszewska K, Monge JC, Mohamed F, Bendeck MP, Stewart DJ (1998) Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor. Circ Res.18;82(9):1007-15.

Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2(10):737-44.

Birkedal-Hansen H, Taylor RE. (1982) Detergent-activation of latent collagenase and resolution of its component molecules. Biochem Biophys Res Commun. 107(4):1173-8.

Blanco FJ, Geng Y, Lotz M (1995) Differentiation-dependent effects of IL-1 and TGF-beta on human articular chondrocyte proliferation are related to inducible nitric oxide synthase expression. J Immunol. 154(8):4018-26.

Brandi G, Paiardini M, Cervasi B, Fiorucci C, Filippone P, De Marco C, Zaffaroni N, Magnani M (2003) A new indole-3-carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and induces G1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines. Cancer Res. 63(14):4028-36.

Brennan P, Hsu CC, Moullan N, Szeszenia-Dabrowska N, Lissowska J, Zaridze D, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Gemignani F, Chabrier A, Hall J, Hung RJ, Boffetta P, Canzian F.(2005) Effect of cruciferous vegetables on lung cancer in patients stratified by genetic status: a mendelian randomisation approach. Lancet. 366(9496):1558-60.

Chang X, Tou JC, Hong C, Kim HA, Riby JE, Firestone GL, Bjeldanes LF (2005) 3,3'-Diindolylmethane inhibits angiogenesis and the growth of transplantable human breast carcinoma in athymic mice. Carcinogenesis. 26(4):771-8.

Chen YH, Dai HJ, Chang HP (2003) Suppression of inducible nitric oxide production by indole and isothiocyanate derivatives from Brassica plants in stimulated macrophages. Planta Med. 69(8):696-700.

Chen WH, Chen Y, Cui GH (2005) Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells and on angiogenesis in ECV304 cells. Chin Med J (Engl).118(24):2052-7.

Chiao JW, Wu H, Ramaswamy G, Conaway CC, Chung FL, Wang L, Liu D (2004) ngestion of an isothiocyanate metabolite from cruciferous vegetables inhibits growth of human prostate cancer cell xenografts by apoptosis and cell cycle arrest. Carcinogenesis. 25(8):1403-8

Chiarugi V, Magnelli L, Gallo O (1998) Cox-2, iNOS and p53 as play-makers of tumor angiogenesis. Int J Mol Med. 2(6):715-9.

Conaway CC, Wang CX, Pittman B, Yang YM, Schwartz JE, Tian D, McIntee EJ, Hecht SS, Chung FL (2005) Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res.65(18):8548-57.

Davel L, D'Agostino A, Espanol A, Jasnis MA, Lauria de Cidre L, de Lustig ES, Sales ME (2002) Nitric oxide synthase-cyclooxygenase interactions are involved in tumor cell angiogenesis and migration. J Biol Regul Homeost Agents. 16(3):181-9.

Davis KL, Martin E, Turko IV, Murad F (2001) Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol. 41:203-36.

Dulak J, Jozkowicz A, Dembinska-Kiec A, Guevara I, Zdzienicka A, Zmudzinska-Grochot D, Florek I, Wojtowicz A, Szuba A, Cooke JP (2000) Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 20(3):659-66.

Dixelius J, Larsson H, Sasaki T, Holmqvist K, Lu L, Engstrom A, Timpl R, Welsh M, Claesson-Welsh L (2000) Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood. 95(11):3403-11.

Eberhardt W, Akool el-S, Rebhan J, Frank S, Beck KF, Franzen R, Hamada FM, Pfeilschifter J (2002) Inhibition of cytokine-induced matrix metalloproteinase 9 expression by peroxisome proliferator-activated receptor alpha agonists is indirect and due to a NO-mediated reduction of mRNA stability. J Biol Chem. 277(36):33518-28.

Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2(3):161-74.

Egi K, Conrad NE, Kwan J, Schulze C, Schulz R, Wildhirt SM.(2004) Inhibition of inducible nitric oxide synthase and superoxide production reduces matrix metalloproteinase-9 activity and restores coronary vasomotor function in rat cardiac allografts. Eur J Cardiothorac Surg. 26(2):262-9.

Elbjeirami WM, West JL (2006) Angiogenesis-like Activity of Endothelial Cells Co-cultured with VEGF-producing Smooth Muscle Cells.Tissue Eng. (in press)

Eubank TD, Galloway M, Montague CM, Waldman WJ, Marsh CB (2004) M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol.171(5):2637-43.

Fan F, Wey JS, McCarty MF, Belcheva A, Liu W, Bauer TW, Somcio RJ, Wu Y, Hooper A, Hicklin DJ, Ellis LM (2005) Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene. 24(16):2647-53.

Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL (1999) Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res. 59(16):3915-8.

Felley-Bosco E, Ambs S, Lowenstein CJ, Keefer LK, Harris CC (1994) Constitutive expression of inducible nitric oxide synthase in human bronchial epithelial cells induces c-fos and stimulates the cGMP pathway. Am J Respir Cell Mol Biol. 11(2):159-64.

Ferrara N (2001) Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol. 280(6):C1358-66.

Ferrara N, Gerber HP (2001) The role of vascular endothelial growth factor in angiogenesis. Acta Haematol. 106(4):148-56

Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem. 267(16):10931-4.

Folkman J (1985) Tumor angiogenesis. Adv Cancer Res. 43:175-203.

Folkman J (1975) Tumor angiogenesis : a possible control point in tumor growth. Ann Intern Med 82(1):96-100

Folgueras AR, Pendas AM, Sanchez LM, Lopez-Otin C (2004) Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol. 48(5-6):411-24.

Form DM, Auerbach R (1983) PGE2 and angiogenesis. Proc Soc Exp Biol Med. 172(2):214-8.

Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 16(9):4604-13.

Fowke JH, Chung FL, Jin F, Qi D, Cai Q, Conaway C, Cheng JR, Shu XO, Gao YT, Zheng W (2003) Urinary isothiocyanate levels, brassica, and human breast cancer Cancer Res. 63(14):3980-6.

Fruhbeis B, Zwadlo G, Brocker EB, Osthoff KS, Hagemeier HH, Topoll H, Sorg C (1988) Immunolocalization of an angiogenic factor (HAF) in normal, inflammatory and tumor tissues. Int J Cancer. 15;42(2):207-12.

Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A. 98(5):2604-9.

Galvez A, Gomez-Ortiz G, Diaz-Ricart M, Escolar G, Gonzalez-Sarmiento R, Zurbano MJ, Ordinas A, Castillo R (1997) Desmopressin (DDAVP) enhances platelet adhesion to the extracellular matrix of cultured human endothelial cells through increased expression of tissue factor. Thromb Haemost. 77(5):975-80.

Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest. 14(5):623-33.

Graham K, Cass C, Befus AD, Mayers I, Radomski MW (2003) Nitric oxide and cyclic GMP increase the expression of matrix metalloproteinase-9 in vascular smooth muscle. J Pharmacol Exp Ther. 307(1):429-36.

Grant D, Cid M, Kibbey MC, Kleinman H. (1992) Extracellular matrix-cell interaction: Matrigel and complex cellular pattern formation. Lab Invest. 67(6):805-6

Guzik TJ, Korbut R, Adamek-Guzik T (2003) Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol. 54(4):469-87.

Halkier BA, Gershenzon J (2006) BIOLOGY AND BIOCHEMISTRY OF GLUCOSINOLATES. Annu Rev Plant Biol.57:303-333.

Hanahan D (1997) Signaling vascular morphogenesis and maintenance. Science. 277(5322):48-50.

Harmey JH, Bucana CD, Lu W, Byrne AM, McDonnell S, Lynch C, Bouchier-Hayes D, Dong Z (2002) Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer. 101(5):415-22.

Hecht SS (1999) Chemoprevention by isothiocyanates. J Cell Biochem Suppl. 22:195-209.

Hirose M, Yamato M, Kwon OH, Harimoto M, Kushida A, Shimizu T, Kikuchi A, Okano T (2000) Temperature-Responsive surface for novel co-culture systems of hepatocytes with endothelial cells: 2-D patterned and double layered co-cultures. Yonsei Med J. 41(6):803-13.

Hojilla CV, Mohammed FF, Khokha R (2003) Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer. 89(10):1817-21.

Hockel M, Jung W, Vaupel P, Rabes H, Khaledpour C, Wissler JH (1988) Purified monocyte-derived angiogenic substance (angiotropin) induces controlled angiogenesis associated with regulated tissue proliferation in rabbit skin. J Clin Invest. 82(3):1075-90.

Hockel M, Sasse J, Wissler JH (1987) Purified monocyte-derived angiogenic substance (angiotropin) stimulates migration, phenotypic changes, and "tube formation" but not proliferation of capillary endothelial cells in vitro. J Cell Physiol. 133(1):1-13.

Hori I, Ryoyama K (1991) Further cytological observation on 'activation' by superimposed antigen of inflammation-mediated macrophages. J Submicrosc Cytol Pathol. 23(2):245-54.

Hwang ES, Lee HJ. (2006) Phenylethyl isothiocyanate and its N-acetylcysteine conjugate suppress the metastasis of SK-Hep1 human hepatoma cells. J Nutr Biochem.

Ippoushi K, Itou H, Azuma K, Higashio H (2005) Effect of naturally occurring organosulfur compounds on nitric oxide production in lipopolysaccharide-activated macrophages. Life Sci. 71(4):411-9.

Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL(1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12(2):149-62.

Kaneko FT, Arroliga AC, Dweik RA, Comhair SA, Laskowski D, Oppedisano R, Thomassen MJ, Erzurum SC (1998) Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am J Respir Crit Care Med. 158(3):917-23.

Kedeshian P, Sternlicht MD, Nguyen M, Shao ZM, Barsky SH(1998) Humatrix, a novel myoepithelial matrical gel with unique biochemical and biological properties. Cancer Lett. 123(2):215-26.

Kikuchi H. (2000) Differential influences of bFGF and VEGF on the expression of vascular cell adhesion molecule-1 on human umbilical vein endothelial cells. Nihon Rinsho Meneki Gakkai Kaishi. 23(1):12-21

Kroll J, Waltenberger J (1998) VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochem Biophys Res Commun. 252(3):743-6.

Kuang YF, Chen YH (2004) Induction of apoptosis in a non-small cell human lung cancer cell line by isothiocyanates is associated with P53 and P21. Food Chem Toxicol. 42(10):1711-8.

Khor TO, Keum YS, Lin W, Kim JH, Hu R, Shen G, Xu C, Gopalakrishnan A, Reddy B, Zheng X, Conney AH, Kong AN (2006) Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res. 66(2):613-21.

Langley RR, Fan D, Tsan RZ, Rebhun R, He J, Kim SJ, Fidler IJ.(2004) Activation of the platelet-derived growth factor-receptor enhances survival of murine bone endothelial cells. Cancer Res. 64(11):3727-30

Lamoreaux WJ, Fitzgerald ME, Reiner A, Hasty KA, Charles ST(1998) Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc Res. 55(1):29-42.

Lampe JW (1999) Health effects of vegetables and fruit: assessing mechanisms of action in human experimental studies. Am J Clin Nutr. 70(3 Suppl):475S-490S.

Lee B, Moon SK (2005) Resveratrol inhibits TNF-alpha-induced proliferation and matrix metalloproteinase expression in human vascular smooth muscle cells. J Nutr. 135(12):2767-73.

Lee JY, Moon SK, Hwang CW, Nam KS, Kim YK, Yoon HD, Kim MG, Kim CH (2005) A novel function of benzyl isothiocyanate in vascular smooth muscle cells: the role of ERK1/2, cell cycle regulation, and matrix metalloproteinase-9. J Cell Physiol. 203(3):493-500.

Leibovich SJ, Chen JF, Pinhal-Enfield G, Belem PC, Elson G, Rosania A, Ramanathan M, Montesinos C, Jacobson M, Schwarzschild MA, Fink JS, Cronstein B(2002) Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin. Am J Pathol. 160(6):2231-44.

Le Noble FA, Schreurs NH, van Straaten HW, Slaaf DW, Smits JF,
Rogg H, Struijker-Boudier HA. (1993) Evidence for a novel
angiotensin II receptor involved in angiogenesis in chick embryo
chorioallantoic membrane. Am J Physiol. 264(2)460-465

Li A, Varney ML, Valasek J, Godfrey M, Dave BJ, Singh RK.(2005)
Autocrine role of interleukin-8 in induction of endothelial cell
proliferation, survival, migration and MMP-2 production and
angiogenesis. Angiogenesis 8(1):63-71

Li SL, Zhang SQ, Qin CP, Chen B, Chen ZT, Jin JS, Wu WL.(2006)
Changes in inflammatory cytokines released by pulmonary
intravascular macrophages after stimulation with
lipopolysaccharide. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue.
18(3):136-8.

Li MC, Liang DS, Xu ZM, Lei LS, Yang SQ (2000) Effect of Ganoderma polysaccharides on cAMP in murine peritoneal macrophages.Zhongguo Zhong Yao Za Zhi. 25(1):41-3.

Liu L, Liu XS, Zhang XQ, Ming J, Xu H, Cheng TM (2005) Effects of macrophages on the biological behaviors and VEGF receptor mRNA, Hoxb2 mRNA, and integrin alphavbeta3 expressions of vascular endothelial cells. Di Yi Jun Yi Da Xue Xue Bao. 25(2):148-51.

Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 134(12 Suppl):3479S-3485S.

Liu YP, Guan CX, Bai HB, Qin XQ, Liu HJ (2005) Effects of vasoactive intestinal peptide on LPS-induced MMP-9 expression by alveolar macrophages in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 30(6):645-9.

Lu C, Zhao FD, Li XB, Yin LH (2005) Up regulation of interleukin-8 expressions induced by mast cell tryptase via protease activated receptor-2 in endothelial cell line. Chin Med J (Engl). 118(22):1900-6.

Ma Y, Kadner SS, Guller S. (2004) Differential effects of lipopolysaccharide and thrombin on interleukin-8 expression in syncytiotrophoblasts and endothelial cells: implications for fetal survival. Ann N Y Acad Sci. 1034:236-44.

Maeno H, Ono T, Dhar DK, Sato T, Yamanoi A, Nagasue N (2005) Expression of hypoxia inducible factor-1alpha during liver regeneration induced by partial hepatectomy in rats. Liver Int. 25(5):1002-9.

Malaguarnera L, Imbesi RM, Scuto A, D'Amico F, Licata F, Messina A, Sanfilippo S (2004) Prolactin increases HO-1 expression and induces VEGF production in human macrophages. J Cell Biochem. 93(1):197-206.

Marcet-Palacios M, Graham K, Cass C, Befus AD, Mayers I, Radomski MW (2003) Nitric oxide and cyclic GMP increase the expression of matrix metalloproteinase-9 in vascular smooth muscle. J Pharmacol Exp Ther. 307(1):429-36

Marikovsky M, Ziv V, Nevo N, Harris-Cerruti C, Mahler O (2003) Cu/Zn superoxide dismutase plays important role in immune response. J Immunol. 170(6):2993-3001.

Mohan R, Sivak J, Ashton P, Russo LA, Pham BQ, Kasahara N, Raizman MB, Fini ME (2000) Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem. 275(14):10405-12.

Murata M, Yudoh K, Nakamura H, Kato T, Inoue K, Chiba J, Nishioka K, Masuko-Hongo K (2006) Distinct signaling pathways are involved in hypoxia- and IL-1-induced VEGF expression in human articular chondrocytes. J Orthop Res. (in press)

Murohara T, Horowitz JR, Silver M, Tsurumi Y, Chen D, Sullivan A, Isner JM (1998) Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation. 97(1):99-107.

Murohara T, Witzenbichler B, Spyridopoulos I, Asahara T, Ding B, Sullivan A, Losordo DW, Isner JM (1999) Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol. 19(5):1156-61.

Murakami Y, Shoji M, Hanazawa S, Tanaka S, Fujisawa S (2003) Preventive effect of bis-eugenol, a eugenol ortho dimer, on lipopolysaccharide-stimulated nuclear factor kappa B activation and inflammatory cytokine expression in macrophages. Biochem Pharmacol. 66(6):1061-6.

Nakamura Y, Yasuoka H, Zuo H, Takamura Y, Miyauchi A, Nakamura M, Kakudo K (2006a) Nitric oxide in papillary thyroid carcinoma: induction of vascular endothelial growth factor D and correlation with lymph node metastasis. J Clin Endocrinol Metab. 91(4):1582-5.

Nakamura Y, Yasuoka H, Tsujimoto M, Yoshidome K, Nakahara M, Nakao K, Nakamura M, Kakudo K(2006b) Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res. 12(4):1201-7.

Namkoong S, Lee SJ, Kim CK, Kim YM, Chung HT, Lee H, Han JA, Ha KS, Kwon YG, Kim YM (2005) Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Exp Mol Med. 37(6):588-600.

Noiri E, Lee E, Testa J, Quigley J, Colflesh D, Keese CR, Giaever I, Goligorsky MS (1998) Podokinesis in endothelial cell migration: role of nitric oxide. Am J Physiol. 274(1 Pt 1):C236-44.

Norrby K (2002) Mast cells and angiogenesis. APMIS. 110(5):355-71.

Ogawa K, Chen F, Kuang C, Chen Y (2004) Suppression of matrix metalloproteinase-9 transcription by transforming growth factor-beta is mediated by a nuclear factor-kappaB site. Biochem J. 381(Pt 2):413-22.

Ostendorf T, Van Roeyen C, Westenfeld R, Gawlik A, Kitahara M, De Heer E, Kerjaschki D, Floege J, Ketteler M. (2004) Inducible nitric oxide synthase-derived nitric oxide promotes glomerular angiogenesis via upregulation of vascular endothelial growth factor receptors. J Am Soc Nephrol. 15(9):2307-19

Parkin DR, Malejka-Giganti D (2004) Differences in the hepatic P450-dependent metabolism of estrogen and tamoxifen in response to treatment of rats with 3,3'-diindolylmethane and its parent compound indole-3-carbinol. Cancer Detect Prev. 28(1):72-9.

Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC (1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest. 100(12):3131-9.

Pappa G, Lichtenberg M, Iori R, Barillari J, Bartsch H, Gerhauser C (2006) Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat Res. (in press)

Plate AY, Gallaher DD (2006) Effects of indole-3-carbinol and phenethyl isothiocyanate on colon carcinogenesis induced by azoxymethane in rats. Carcinogenesis. 27(2):287-292.

Ranieri G, Gasparini G (2001) Angiogenesis and angiogenesis inhibitors: a new potential anticancer therapeutic strategy. Curr Drug Targets Immune Endocr Metabol Disord. 1(3):241-253.

Raza SL, Cornelius LA (2000) Matrix metalloproteinases: pro- and anti-angiogenic activities. J Investig Dermatol Symp Proc. 5(1):47-54.

Rousseau S, Houle F, Huot J (2000) Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells. Trends Cardiovasc Med. 10(8):321-7.

Rundhaug JE. (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 9(2):267-85.

Seo KH, Ko HM, Choi JH, Jung HH, Chun YH, Choi IW, Lee HK, Im SY (2004) Essential role for platelet-activating factor-induced NF-kappaB activation in macrophage-derived angiogenesis. Eur J Immunol. 34(8):2129-37.

Satyan KS, Swamy N, Dizon DS, Singh R, Granai CO, Brard L (2006) Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: Role of caspase and MAPK activation. Gynecol Oncol. (in press)

Shima DT, Adamis AP, Ferrara N, Yeo KT, Yeo TK, Allende R, Folkman J, D'Amore PA (1995) Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol Med. 1(2):182-93.

Srivastava SK, Singh SV (2004) Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells.Carcinogenesis. 25(9):1701-9

Sticha KR, Kenney PM, Boysen G, Liang H, Su X, Wang M, Upadhyaya P, Hecht SS (2002) Effects of benzyl isothiocyanate and phenethyl isothiocyanate on DNA adduct formation by a mixture of benzo[a]pyrene and 4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone in A/J mouse lung. Carcinogenesis. 23(9):1433-9.

Suh SJ, Moon SK, Kim CH (2005) Raphanus sativus and its isothiocyanates inhibit vascular smooth muscle cells proliferation and induce G(1) cell cycle arrest. Int Immunopharmacol. 26(5):854-61.

Sun CY, Hu Y, Wang HF, He WJ, Wang YD, Wu T (2006) Brain-derived neurotrophic factor inducing angiogenesis through modulation of matrix-degrading proteases. Chin Med J (Engl). 119(7):589-595.

Sun MH, Han XC, Jia MK, Jiang WD, Wang M, Zhang H, Han G, Jiang Y (2005) Expressions of inducible nitric oxide synthase and matrix metalloproteinase-9 and their effects on angiogenesis and progression of hepatocellular carcinoma. World J Gastroenterol. 11(38):5931-5937.

Sunderkotter C, Goebeler M, Schulze-Osthoff K, Bhardwaj R, Sorg C (1991) Macrophage-derived angiogenesis factors. Pharmacol Ther. 51(2):195-216.

Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukoc Biol. 1955(3):410-422.

Sunyer T, Rothe L, Jiang X, Osdoby P, Collin-Osdoby P (1996) Proinflammatory agents, IL-8 and IL-10, upregulate inducible nitric oxide synthase expression and nitric oxide production in avian osteoclast-like cells. J Cell Biochem. 60(4):469-483.

Takahashi M, Ikeda U, Masuyama J, Kitagawa S, Kasahara T, Shimpo M, Kano S, Shimada K (1996) Monocyte-endothelial cell interaction induces expression of adhesion molecules on human umbilical cord endothelial cells. Cardiovasc Res. 32(2):422-9.

Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V (2002) Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol. 160(2):673-80.

Tu YT, Tao J, Liu YQ, Li Y, Huang CZ, Zhang XB, Lin Y (2006)Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in human malignant melanoma and their relation to angiogenesis. Clin Exp Dermatol. 31(3):413-8

Unemori EN, Ferrara N, Bauer EA, Amento EP (1992) Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells J Cell Physiol. 153(3):557-62

Uutela M, Wirzenius M, Paavonen K, Rajantie I, He Y, Karpanen T, Lohela M, Wiig H, Salven P, Pajusola K, Eriksson U, Alitalo K (2004) PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis. Blood. 104(10):3198-3204

VanSaun MN, Matrisian LM (2006) Matrix metalloproteinases and cellular motility in development and disease. Birth Defects Res C Embryo Today. 78(1):69-79

Verdon CP, Burton BA, Prior RL (1995) Sample pretreatment with nitrate reductase and glucose-6-phosphate dehydrogenase quantitatively reduces nitrate while avoiding interference by NADP+ when the Griess reaction is used to assay for nitrite. Anal Biochem. 224(2):502-8.

Villalobo A (2006) Nitric oxide and cell proliferation. FEBS J. 273(11):2329-44

Wang FQ, So J, Reierstad S, Fishman DA (2006) Vascular endothelial growth factor-regulated ovarian cancer invasion and migration involves expression and activation of matrix metalloproteinases. Int J Cancer. 118(4):879-88.

Wang LG, Liu XM, Chiao JW (2006) Repression of androgen receptor in prostate cancer cells by phenethyl isothiocyanate. Carcinogenesis. (in press)

Wissler JH (2004) Extracellular and circulating redox- and metalloregulated eRNA and eRNP: copper ion-structured RNA cytokines (angiotropin ribokines) and bioaptamer targets imparting RNA chaperone and novel biofunctions to S100-EF-hand and disease-associated proteins. Ann N Y Acad Sci. 1022:163-84.

Wu HT, Lin SH, Chen YH (2005) Inhibition of cell proliferation and in vitro markers of angiogenesis by indole-3-carbinol, a major indole metabolite present in cruciferous vegetables. J Agric Food Chem. 53(13):5164-5169

Xiong M, Elson G, Legarda D, Leibovich SJ (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol. 153(2):587-98

Xu C, Shen G, Yuan X, Kim JH, Gopalkrishnan A, Keum YS, Nair S, Kong AN (2006) ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinogenesis. 27(3):437-45

Xu H, Hu Y, Cao S (1999) Expression and cellular localization of interleukin-8 mRNA and protein in the area of xenogenic bone implant. Chin J Traumatol. 12(1):3-7

Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG (2002) The role of nitric oxide in cancer. Cell Res. 12(5-6):311-20

Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, Bicknell R (1997) Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest. 99(11):2625-34.

戴惠晶 (2001) 十字花科蔬菜衍生物對Lipopolysaccharide 與IFN-γ所誘導之一氧化氮的影響, 台北醫學大學保健營養學研究所碩士論文

吳曉婷 (2004) 十字花科蔬菜衍生物對血管內皮E.A. hy926細胞株增升級類血管生成抑制之影響, 台北醫學大學保健營養學研究所碩士論文
劉惠菁 (2004) 十字花科蔬菜衍生物對活化之RAW264.7細胞株分泌發炎相關介質的影響, 台北醫學大學保健營養學研究所碩士論文

行政院衛生署,台灣地區民國93年十大死因原因統計資料。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
1. Suppression of Lipopolysaccharide and Interferon-γ Induced Nitric Oxide Production by Cruciferous Vegetable Derivatives
2. The Effect of Administrative Digitalization on Civil Servants in Local Government: A Social-Technical System Approach
3. Effects of cruciferous vegetable derivatives on inflammatory mediators secreted by activated RAW 264.7 cells
4. Inhibition of proliferation and tube formation by cruciferous vegetable derivatives in endothelial E.A. hy 926 cells
5. Anoectochilus formosanus effective fraction modulated innate immunity in mice
6. The implication of peritoneal mesothelial cell apoptosis in peritonitis of peritoneal dialysis patients
7. Biological effects of sodium arsenite on cultured human umbilical vein endothelial cells
8. Anti-inflammation effect of carvacrol from Plectranthus amboinicus in macrophage
9. Effect of wild bitter bourd extracts on lipopolysaccharide induced inflammatory responses in macrophage cell RAW 264.7
10. Low Concentrations of IgG Antibody from Patients with Blackfoot Disease Stimulates Endothelial Cell Proliferation and Angiogenesis in Vitro
11. Anti-inflammatory effects of aqueous extract from Welsh onion green leaves.
12. The Studies on the Screening models for Angiogenesis Inhibitors in Chinese Herbs
13. The Inhibitory Mechanisms of Psoralidin on Lipopolysaccharide (LPS)-induced Nitric Oxide Production in RAW264.7 Macrophages
14. Cloning of Angiopoietin-1 gene and study of the regulation on angiogenic factors in the rete mirabile and ovary in Japanese eel (Anguilla japonica)
15. Modulation of host responses to biomaterials by surface modification of layer-by-layer polyelectrolyte multilayers
 
1. Determinants of Reported Health Promoting Lifestyle among a Hospital Employees
2. Inhibition of proliferation and tube formation by cruciferous vegetable derivatives in endothelial E.A. hy 926 cells
3. The Association of Knowledge of Diet and the Medical Complication with Dietary Compliance in Hemodialysis Patients
4. Effects of cruciferous vegetable derivetives on metastasis and its adhesion and differentiation
5. A Comparative Study of Physical Activity, Bone Mineral Density, Fatigue and Physical Fitness Between Hemodialysis and Peritoneal Dialysis Patients
6. Suppression of Lipopolysaccharide and Interferon-γ Induced Nitric Oxide Production by Cruciferous Vegetable Derivatives
7. Selection Model of Medical Information System Vendors for Outsourcing Using Grey Relational Analysis and Analytic Network Process
8. Applying the ANP Model for Resource-based Allocation for Senior Citizen Housing in Taiwan to Ensure a Competitive Advantage
9. THE EFFECT OF PRODUCT KNOWLEDGE AND BRAND IMAGE ON PURCHASE INTENTION MODERATED BY PRODUCT CATEGORY
10. A research of Fitness Clubs Service Quality and Customer Behavior Intention-as Applied to Taipei Rapid Transit Corporation Beitou Resort
11. A Study on Swimming Attitude of Junior High School Teachers, Parents and Students in Taipei
12. A Study of the Relationship among Individual Background,Work Values and Occupation Selection Tendency of the Seniors of Health Care Administration
13. 後進產業發展之機會與限制-以台灣薄膜電晶體液晶顯示器(TFT-LCD)產業為例
14. The Influence of Brand Image and Advertising Spokesperson on Female Consumers Purchasing Cosmetics
15. The Perception of Hotel Managers of Green Hotels and Ecolabels- A Case Study of Penghu
 
system icon system icon