跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/06 16:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯博仁
研究生(外文):Bo-Ren Ko
論文名稱:酒粕中高度醣化最終產物抑制劑的分離
論文名稱(外文):Isolation of novel inhibitor of advanced glycosylation products from Sake Vinasse
指導教授:李宏謨李宏謨引用關係
指導教授(外文):Horng-Mo Lee
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:細胞及分子生物研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:53
中文關鍵詞:糖尿病併發症過度糖化最終產物快速篩檢法
相關次數:
  • 被引用被引用:3
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於營養過剩及飲食習慣的改變,糖尿病的發生率正快速的增加中。據估計公元二千年全球有一千五百萬糖尿病患者,到公元二千年將遽增至二千二百萬人。糖尿病常伴隨白內障、視網膜病變、心血管病變、腎臟病變、神經病變等慢性併發症,且一旦發生都將成為伴隨病患餘生的不可逆慢性病。不但病人本身、病人家屬痛苦不勘,所耗費的醫療成本更是社會經濟的一大負擔。如何找到可以減輕或防止糖尿病併發症的藥物是目前醫學界最重要的課題之一。然而葡萄糖是營養成分,高血糖為何會引發這麼多嚴重的併發症一直是醫學研究最重要的課題。所幸最近的研究顯示不論是因為胰島素缺乏的第一型糖尿病或胰島素訊息傳遞之第二型糖尿病,都會因為葡萄糖無法運送至細胞內代謝,而造成程度不一的高血糖。血糖增高之後往往會和蛋白質的胺基經非酵糖尿病併發症、過度糖化最終產物、快速篩檢法、藥物開發素的Maillard 反應而產生一系列的螢光產物,統稱為”過度糖化最終產物” (Advanced Glycosylation End Products,簡稱AGEs)。AGEs能改變組織蛋白的結構和功能,是糖尿病併發症的主要病因。除了經由非酵素的Maillard 反應之外,過高的血糖會利用高 Km 的aldose reductase催化而進行所謂的polyol代謝路徑。polyol代謝路徑會消耗NADPH,而影響內因性抗氧化素glutathione的合成,造成氧化的壓力。polyol代謝路徑還會產出過多的三碳醣,並進一步反應成methylglyoxal等帶有二個carbonyl group的高反應性中間產物;Methylglyoxal也可以和蛋白質作用而產生AGEs。Pimegidine (aminoguanidine),是一種nucleophilic agent 可以透過其hydrazine group (-NH-NH2)及guanidino group -NH-C(=NH) 阻斷Maillard反應的Amadori 產物為無反應性的產物而不至於形成高反應性的AGEs。過去數年aminoguanidine曾被證實可以有效的減輕或避免糖尿病大白鼠併發症的產生,雖然aminoguanidine因為嚴重的副作用及基因毒性而無法通過第三期臨床試驗,但已引起世界各國開發AGEs抑制藥物的熱潮。我國固有的方劑和中草藥中有許多長久以來被用於治療三多症的天然藥物,其中很多天然藥物都已被純化或半純化。可惜至今國內尚未開發針對抑制AGEs形成、或AGEs降解的藥物篩選法。現在我們研發能阻斷高反應性dicarbonyl 基團及能抑制後Amadori步驟 (post-Amadoristage) 之藥物的高通量篩檢法,並用以篩選中草藥,期望能發現可以阻度AGEs形成之藥物,並以其結構用為藥物開發之基礎。另外,我們從酒粕分離出的粗萃物,已經證實對於amadori產物的形成有抑制的效果,進一步期望能夠純化出單一結構的化合物,以利日後研究治療糖尿病併發症藥物的發展。
Due to over-nutrition and changes of food style, the occurrence rate of diabetes mellitus has been dramatically increased. It is estimated that the numbers of people with diabetes will be increased from 15.1 millions in year 2000 to 22.4 million in 2010, which stands for a 46 % increase. Diabetes is often associated with a variety of severe chronic complications, including cataract, diabetic retinopathy, cardiovascular disorders, diabetic nephropathy, and diabetic neuropathy. These chronic complications are mostly irreversible and the burden of medical care has become an important social economic issue. To develop drugs that can effectively alleviate or prevent diabetic complication in a timely manner is an important and difficult challenge. One of the major obstacle in drug development is partly because the exact mechanisms of hyperglycemia-induced complications are not clear. Recent evidence revealed that advanced glycosylation end products (AGEs) play a central role in mediating the diabetic sequelae. AGEs can be formed by nonenzymatic “Mallard reaction” of the caronyl group of glucose and the amino group of proteins, or by polyol pathway. Under hyperglycemic conditions, glucose can be converted to sorbitol by high Km aldose reductase, an enzyme used NADPH as cofactor. Reduction of NADPH will hamper the formation of glutathione, am endogenous antioxidant. Sorbitol can be further converted to fructose and triose by the polyol pathway and give rise to generation of methyl glyoxal. Methylglyoxal is characterized of its highly reactive dicarbonyl group, which can instantly react with protein to form AGEs. Pimegidine (aminoguanidine) is a nucleophilic agent owing reactive hydrazine group (-NH-NH2) and guanidino group -NH-C(=NH). These reaction centers can block the reactive carbonyl group or Amadori product and prevent AGEs formation. In the past few years, Pimegidine has been shown to alleviate diabetic nephropathy in diabetic rat model. Although Pimegidine did not pass the phase II clinical trial due to its severe adverse effects and genome toxicity, these therapeutic targets has encourage many cutting edge researches. Many Chinese herbal drugs have been used to treat diabetes for thousand years. The purified or partially purified compounds from natural products possess diversified structural features and are excellent compound library for anti-diabetic drug development. Our laboratory has been working on AGEs for years and has generated a lot of important research materials and used them to develop many assay protocols including competitive ELISA and automatic AGEs measurement protocol. We have developd that a series of high throughput screening assay based on the mechanism of AGEs formation. We hope these high throughput screen assay will enhance the identification of lead compounds that are inhibit or break AGEs formation.
圖目錄-----------------------------------------------III-IV
中文摘要--------------------------------------------------V
英文摘要-------------------------------------------------VI
縮寫表--------------------------------------------------VII
壹、 緒論
一、 過度糖化最終產物----------------------------------1-4
二、 過度糖化最終產物與糖尿病併發症的關係-------------5-11
三、 抑制糖化作用及過度糖化最終產物------------------12-17
四、 酒粕-----------------------------------------------18
貳、 研究目的-----------------------------------------19-20
參、 實驗材料與儀器--------------------------------------21
肆、 實驗方法
一、 建立篩選高反應性carbonyl基團阻斷劑----------------22
二、 抑制Amadori產物形成AGEs之藥物篩檢法-----------22-23
三、 酒粕的成分分離與活性測定---------------------------23
伍、實驗結果
一、建立篩選高反應性carbonyl基團阻斷劑------------------24
二、抑制Amadori產物成AGEs之藥物篩檢法---------------24-25
三、中草藥純化物的活性測定-------------------------------25
四、酒粕的成分分離與活性測定¬-----------------------------25
陸、討論----------------------------------------------26-27
柒、參考文獻------------------------------------------28-35
Asgary, S., Naderi, G., Sarrafzadegan, N., et al. (1999) Anti-oxidant effect of flavonoids on hemoglobin glycosylation. Pharmaceutica Acta Helvetiae 73, 223-226.

Baynes, J.W. (1991) Role of oxidative stress in development of complications in diabetes. DIABETES 40, 405-412.

Berg, T.J., Bangstad, H.J., Torjesen, P.A., Osterby, R., Bucala, R. & Hanssen, K.F. (1997) Advanced glycation end products in serum predict changes in the kidney morphology of patients with insulin-dependent diabetes mellitus. Metabolism 46, 661-665.

Birrell, A.M., Heffernan, S.J., Ansselin, A.D., et al. (2000) Functional and structural abnormalities in the nerves of Type I diabetic baboons: Aminoguanidine treatment does not improve nerve function. Diabetologia 43, 110-116.

Brownlee, M. (2000) Negative consequences of glycation. Metabolism: Clinical and Experimental 49, 9-13.

Brownlee, M., Vlassara, H. & Cerami, A. (1985) Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes 34, 938-941.

Brownlee, M., Vlassara, H. & Cerami, A. (1986) Trapped immunoglobulins on peripheral nerve myelin from patients with diabetes mellitus. Diabetes 35, 999-1003.

Bucala, R. (1997) Lipid and lipoprotein modification by advanced glycosylation end-products: Role in atherosclerosis. Experimental Physiology 82, 327-337.

Bucala, R., Makita, Z., Vega, G., et al. (1994) Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proceedings of the National Academy of Sciences of the United States of America 91, 9441-9445.
Ceriello, A., Giugliano, D., Quatraro, A., Donzella, C., Dipalo, G. & Lefebvre, P.J. (1991) Vitamin E reduction of protein glycosylation in diabetes: New prospect for prevention of diabetic complications? DIABETES CARE 14, 68-72.

Chibber, R., Molinatti, P.A., Rosatto, N., Lambourne, B. & Kohner, E.M. (1997) Toxic action of advanced glycation end products on cultured retinal capillary pericytes and endothelial cells: Relevance to diabetic retinopathy. Diabetologia 40, 156-164.

Cooper, M.E., Thallas, V., Forbes, J., et al. (2000) The cross-link breaker, N-phenacylthiazolium bromide prevents vascular advanced glycation end-product accumulation. Diabetologia 43, 660-664.

Cotlier, E. (1981) Aspirin effect on cataract formation in patients with rheumatoid arthritis alone or combined to diabetes. INT. OPHTHALMOL. 3, 173-177.

Duraisamy, Y., Slevin, M., Smith, N., et al. (2001) Effect of glycation on basic fibroblast growth factor induced angiogenesis and activation of associated signal transduction pathways in vascular endothelial cells: Possible relevance to wound healing in diabetes. Angiogenesis 4, 277-288.

Edelstein, D. & Brownlee, M. (1992) Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. DIABETES 41, 26-29.

Ellis, E.N. & Good, B.H. (1991) Prevention of glomerular basement membrane thickening by aminoguanidine in experimental diabetes mellitus. Metabolism 40, 1016-1019.

Gomez-Perez, F.J., Valles-Sanchez, V.E., Lopez-Alvarenga, J.C., et al. (1996) Vitamin E modifies neither fructosamine nor HbA1c levels in poorly controlled diabetes. Revista de Investigacion Clinica 48, 421-424.

Goova, M.T., Li, J., Kislinger, T., et al. (2001) Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. American Journal of Pathology 159, 513-525.

Hedrick, C.C., Thorpe, S.R., Fu, M.X., et al. (2000) Glycation impairs high-density lipoprotein function. Diabetologia 43, 312-320.

Hudson, B.I., Bucciarelli, L.G., Wendt, T., et al. (2003) Blockade of receptor for advanced glycation endproducts: A new target for therapeutic intervention in diabetic complications and inflammatory disorders. Archives of Biochemistry and Biophysics 419, 80-88.

Lewis, B.S. & Harding, J.J. (1990) The effects of aminoguanidine on the glycation (non-enzymic glycosylation) of lens proteins. Experimental Eye Research 50, 463-467.

Lopes-Virella, M.F., Klein, R.L., Lyons, T.J., Stevenson, H.C. & Witztum, J.L. (1988) Glycosylation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. DIABETES 37, 550-557.

Makita, Z., Bucala, R., Rayfield, E.J., et al. (1994) Reactive glycosylation endproducts in diabetic uraemia and treatment of renal failure. The Lancet 343, 1519-1522.

Makita, Z., Vlassara, H., Rayfield, E., et al. (1992) Hemoglobin-AGE: A circulating marker of advanced glycosylation. SCIENCE 258, 651-653.

McCance, D.R., Dyer, D.G., Dunn, J.A., et al. (1993) Maillard reaction products and their relation to complications in insulin- dependent diabetes mellitus. Journal of Clinical Investigation 91, 2470-2478.

Miyauchi, Y., Shikama, H., Takasu, T., et al. (1996) Slowing of peripheral motor nerve conduction was ameliorated by aminoguanidine in streptozocin-induced diabetic rats. European Journal of Endocrinology 134, 467-473.

Monnier, V.M., Sell, D.R., Nagaraj, R.H., et al. (1992) Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. DIABETES 41, 36-41.

Nakamura, N., Hasegawa, G., Obayashi, H., et al. (2003) Increased concentration of pentosidine, an advanced glycation end product, and interleukin-6 in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Research and Clinical Practice 61, 93-101.

Neumann, A., Schinzel, R., Palm, D., Riederer, P. & Mu?nch, G. (1999) High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-?B activation and cytokine expression. FEBS Letters 453, 283-287.

Niwa, T., Katsuzaki, T., Miyazaki, S., et al. (1997) Immunohistochemical detection of imidazolone, a novel advanced glycation end product, in kidneys and aortas of diabetic patients. Journal of Clinical Investigation 99, 1272-1280.

Obayashi, H., Nakano, K., Shigeta, H., et al. (1996) Formation of crossline as a fluorescent advanced glycation end product in vitro and in vivo. Biochemical and Biophysical Research Communications 226, 37-41.

Okumura, M., Okuda, T., Nakamura, T. & Yajima, M. (1996) Acceleration of wound healing in diabetic mice by basic fibroblast growth factor. Biological and Pharmaceutical Bulletin 19, 530-535.

Ou, P. & Wolff, S.P. (1993) Aminoguanidine: A drug proposed for prophylaxis in diabetes inhibits catalase and generates hydrogen peroxide in vitro. Biochemical Pharmacology 46, 1139-1144.

Park, L., Raman, K.G., Lee, K.J., et al. (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nature Medicine 4, 1025-1031.

Peppa, M., Brem, H., Ehrlich, P., et al. (2003) Adverse Effects of Dietary Glycotoxins on Wound Healing in Genetically Diabetic Mice. Diabetes 52, 2805-2813.

Robert, B. & Harding, J.J. (1992) Prevention of cataract in diabetic rats by aspirin, paracetamol (acetaminophen) and ibuprofen. Experimental Eye Research 54, 509-518.

Santana, R.B., Xu, L., Chase, H.B., Amar, S., Graves, D.T. & Trackman, P.C. (2003) A role for advanced glycation end products in diminished bone healing in type 1 diabetes. Diabetes 52, 1502-1510.
Skolnik, E.Y., Yang, Z., Makita, Z., Radoff, S., Kirstein, M. & Vlassara, H. (1991) Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodelling and diabetic nephropathy. J. Exp. Med. 174, 931-939.

Stern, D.M., Yan, S.D., Yan, S.F. & Schmidt, A.M. (2002) Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Research Reviews 1, 1-15.
Stitt, A.W. (2003) The role of advanced glycation in the pathogenesis of diabetic retinopathy. Experimental and Molecular Pathology 75, 95-108.

Stopper, H., Schinzel, R., Sebekova, K. & Heidland, A. (2003) Genotoxicity of advanced glycation end products in mammalian cells. Cancer Lett 190, 151-156.

Sugiyama, S., Miyata, T., Horie, K., et al. (1996) Advanced glycation end-products in diabetic nephropathy. Nephrology Dialysis Transplantation 11, 91-94.

Szwergold, B.S., Kappler, F. & Brown, T.R. (1990) Identification of fructose 3-phosphate in the lens of diabetic rats. SCIENCE 247, 451-454.

Tanaka, N., Yonekura, H., Yamagishi, S.I., Fujimori, H., Yamamoto, Y. & Yamamoto, H. (2000) The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-[alpha] through nuclear factor-[kappa]B, and by 17[beta]-Estradiol through sp-1 in human vascular endothelial cells. Journal of Biological Chemistry 275, 25781-25790.

Tanji, N., Markowitz, G.S., Fu, C., et al. (2000) Expression of advanced glycation end products and their cellular receptor RAGE diabetic nephropathy and nondiabetic renal disease. Journal of the American Society of Nephrology 11, 1656-1666.

Thornalley, P.J. (2003) Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Archives of Biochemistry and Biophysics 419, 31-40.

Vasan, S., Foiles, P. & Founds, H. (2003) Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Archives of Biochemistry and Biophysics 419, 89-96.

Vasan, S., Zhang, X., Zhang, X., et al. (1996) An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382, 275-278.

Vlassara, H. (1996) Advanced glycation end-products and atherosclerosis. Annals of Medicine 28, 419-426.

Vlassara, H., Brownlee, M. & Cerami, A. (1985) Recognition and uptake of human diabetic peripheral nerve myelin by macrophages. DIABETES 34, 553-557.
Vlassara, H., Brownlee, M. & Cerami, A. (1988) Specific macrophage receptor activity for advanced glycosylation end products inversely correlates with insulin levels in vivo. DIABETES 37, 456-461.

Vlassara, H., Striker, L.J., Teichberg, S., Fuh, H., Yong Ming, L. & Steffes, M. (1994) Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proceedings of the National Academy of Sciences of the United States of America 91, 11704-11708.

Yamagishi, S.I., Amano, S., Inagaki, Y., et al. (2002) Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochemical and Biophysical Research Communications 290, 973-978.

Yamamoto, Y., Kato, I., Doi, T., et al. (2001) Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. Journal of Clinical Investigation 108, 261-268.

Yan, S.D., Schmidt, A.M., Anderson, G.M., et al. (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. Journal of Biological Chemistry 269, 9889-9897.

Yang, S., Litchfield, J.E. & Baynes, J.W. (2003) AGE-breakers cleave model compounds, but do not break Maillard crosslinks in skin and tail collagen from diabetic rats. Archives of Biochemistry and Biophysics 412, 42-46.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top