跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳志仁
研究生(外文):Chih-Jen Wu
論文名稱:腎臟缺血性再灌流傷害調控單核球衍生的樹突細胞之發育
論文名稱(外文):Renal ischemia/reperfusion injury modulates development of monocytes-derived dendritic cells
指導教授:許準榕陳裕仁陳裕仁引用關係
指導教授(外文):Joen-Rong SheuYu-Jen Chen
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:118
中文關鍵詞:樹突細胞源自骨髓單核球所衍生之樹突細胞源自週邊血單核球所衍生之樹突細胞缺血/再灌流傷害分化作用
外文關鍵詞:myeloid dendritic cellsbone marrow-derived dendritic cellsperipheral blood-derived dendritic cellsischemia-reperfusion injurydifferentiation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
受損的組織及細菌的產物會啟動樹突細胞的成熟與遷移。樹突細胞被公認是最佳的抗原呈現細胞,樹突細胞吞噬抗原物質與MHC抗原結合,將抗原訊息表達並遷移至淋巴組織啟動免疫反應。於不同的成熟條件下樹突細胞分別刺激T-helper 1 (Th1) 或 Th2反應。外科手術傷害、運動及身體精神壓力均會影響樹突細胞表型與功能,此時樹突細胞啟動了不同程度之刺激與抑制的免疫反應,而這些反應決定了病程之進展及預後。臨床上,腎臟之缺血/再灌流傷害常導致腎臟移植排斥與缺血性腎衰竭,而腎臟缺血/再灌流傷害如何影響樹突細胞之免疫反應機制仍未清楚,尤其是腎移植後期排斥現象,雖與手術之缺血/再灌流傷害關係密切,且樹突細胞參與了重要角色,然而其間確切之相關性仍未被釐清。本研究之目的是為了解腎臟缺血/再灌流傷害是否會改變樹突細胞之發育過程,其中包括了分化、表型、細胞激素產生、T細胞增殖等功能。樹突細胞的來源分別來自週邊血及骨髓的單核球。
Sprague-Dawley大鼠接受缺血/再灌流手術或假手術後,每日收集血液與尿液評估腎功能 (肌酸酐廓清率CCr) 共14天。於再灌流後第2天及第14天,觀察來自週邊血單核球及骨髓單核球的樹突細胞之分化能力、表面抗原 (CD11c、CD80、CD86、MHC-II, IA) 及功能性指標 (如MLR;IL-12分泌;T細胞分泌的IFN-gamma、IL-4),並觀察傷害後腎臟組織的樹突細胞。
手術後之腎功能 (CCr) 明顯下降,至第5天回復正常,源自週邊血單核球衍生的樹突細胞之分化能力明顯地於缺血/再灌流第2天增加,且伴隨著樹突細胞表現MHC-II、分泌IL-12受被刺激的T細胞IFN-gamma產量均上升。相對於周邊血單核球,源自骨髓的單核球所分化的樹突細胞能力則於手術後第2天明顯被抑制。無論樹突細胞來自週邊血或骨髓的單核球於腎臟傷害後第14天,其分化能力、表型及功能均與假手術組無統計差異。於缺血/再灌流後第2天,可明顯觀察到樹突細胞浸潤於腎臟外側髓質區域。
腎臟缺血/再灌流傷害引起之腎衰竭急性期間,來自週邊血單核球的樹突細胞表現出分化、表型、細胞激素及功能被活化的現象,這可能是反應著成熟樹突細胞於應付免疫挑戰之準備狀態。相對地,來自骨髓之單核細胞的樹突細胞於缺血/再灌流傷害後,反而表現出分化能力被抑制的現象,而其功能並沒有影響,而在此同時樹突細胞會浸潤腎臟外側髓質區。由此可知,於腎臟缺血/再灌流傷害誘發的腎衰竭之急性期的週邊血單核球分化為樹突細胞的能力上升,而骨髓單核細胞分化成樹突細胞能力下降以及樹突細胞浸潤於受損之組織為缺血性腎衰竭之重要之病理機制,此提供未來腎衰竭及移植器官排斥於治療上的一個理論基礎。
Damaged tissues and microbial products trigger the maturation and migration of dendritic cells (DCs) (important antigen-presenting cells [APCs]) to secondary lymphoid organs where the presented antigen stimulates T cell activation. DCs stimulate T-helper 1 (Th1) or Th2 responses depending on the maturation conditions. These conditions may profoundly influence immunological outcome and the role that DCs play in this outcome. DCs play a central role in both stimulating and suppressing immune responses and are impacted by surgical injury, exercise, and other physiological stressors. Ischemia/reperfusion (I/R) injury has been associated with ischemic acute renal failure (ARF), which is a major cause of native kidney and allograft dysfunction. DCs appear to play a central role in the initiation of an adaptive immune response to tissue injury stemming from I/R. The DC response to renal I/R injury has not been defined or clearly distinguished from the DC response to injury due to the renal transplant surgery itself. Also unclear is whether the DC response has a role in the injury phase or in the regeneration process after I/R. This objective aims to determine whether renal I/R injury alters the differentiation, maturation, and activation of myeloid DCs from peripheral blood monocytes (PBMo) and bone marrow monocytes (BMMo). The focus of this study was on DCs derived from monocytes and the impact of renal I/R on these cells only.
Sprague-Dawley rats were subjected to I/R injury or sham-operated. Creatinine clearance (CCr) was monitored daily during the 14 days of reperfusion that followed the ischemic insult. At 2 and 14 days of reperfusion, the following properties of DCs were assessed: the amount of generated DCs from PBMo and BMMo, surface markers [CD11c, CD80, CD86, and MHC-II (IA)], functional status including magnitude of mixed lymphocyte reaction (MLR), production of IL-12 p70 by DCs, production of IFN-gammaandIL-4 by DC-stimulated T cells and the presence of DCs in the kidney.
CCr was greatly reduced in the injured rats 0-4 days after ischemia. Two days after I/R injury to kidney, the numbers of DCs differentiated from PBMo, IL-12 production by DCs, expression of MHC-II (IA), and IFN-gamma production by DC-stimulated T cells were significantly increased in the I/R injured group (compared to the sham-operated group). In contrast to PBMo derived DCs, the generation rate of BMMo-derived DCs was decreased in the I/R injured group at 2 d following I/R. After 14 d of reperfusion, there was no between-group differences in the numbers DCs derived from either PBMo or BMMo, MLR, expression of CD80, CD86, and MHC-II (IA), and production of IL-12, IFN-gamma and IL-4. The immunohistochemistry showed infiltrating DCs in the outer medulla of the I/R injured kidney at 2 d but not 14 d of reperfusion.
The upshift in differentiation of DCs derived from PBMos with a corresponding increase in IL-12 production of mature monocyte-derived DCs and higher production of IFN-gamma by DC-stimulated T cells may reflect a preparatory step in the pathway leading to mature immunogenic DCs and increase in Th1 cell numbers in the acute phase of renal I/R injury. I/R stress reduces the number of DCs differentiated from BMMos but not the functional activity of these DCs. This decrease may reflect a stress-induced downshift in the capacity of BMMos to differentiate into DCs and a parallel upshift in the capacity of DCs to infiltrate the kidney. In summary, the upshift in PBMo differentiation to DCs, downshift in BMMo differentiation to DCs, and infiltration of the kidney at 2 d of reperfusion may be part of an important pathophysiologic acute stress response to ischemic renal failure. Our findings may provide a rational basis for investigating immunosuppressive agents, targeting suppression of DC differentiation, for preventing transplant organ failure at the early stage following I/R injury.
目錄
縮寫表
英文摘要-------------------------------------------------- 1
中文摘要-------------------------------------------------- 4
第一章:緒論---------------------------------------------- 7
1.1 樹突細胞之介紹---------------------------------------- 8
1.2 缺血/再灌流傷害---------------------------------------- 15
1.3 研究目的---------------------------------------------- 23
第二章: 缺血/再灌流傷害對於源自週邊血單核球衍生的樹突細胞之調
控作用------------------------------------------- 24
2.1 研究背景----------------------------------------------- 25
2.2 方法與材料-------------------------------------------- 25
2.3 結果-------------------------------------------------- 36
2.4 討論-------------------------------------------------- 40
第三章: 缺血/再灌流傷害對於源自骨髓單核球衍生的樹突細胞之調控
作用--------------------------------------------- 49
3.1 研究背景---------------------------------------------- 50
3.2 方法與材料-------------------------------------------- 51
3.3 結果-------------------------------------------------- 54
3.4 討論-------------------------------------------------- 57
第四章:研究檢討與未來展望-------------------------------- 63
4.1 研究結論---------------------------------------------- 64
4.2 實驗檢討與改進---------------------------------------- 64
4.3 未來研究方向------------------------------------------ 65
Tables ---------------------------------------------------- 68
Figures---------------------------------------------------- 76
References-------------------------------------------------- 95
Schemes --------------------------------------------------- 110
Austyn, J. M. (1996). New insights into the mobilization and phagocytic activity of dendritic cells. J Exp Med 183, 1287-1292.
Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y. J., Pulendran, B., and Palucka, K. (2000). Immunobiology of dendritic cells. Annu Rev Immunol 18, 767-811.
Basile, D. P., Donohoe, D., Roethe, K., and Osborn, J. L. (2001). Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281, F887-899.
Bonventre, J. V. (1993). Mechanisms of ischemic acute renal failure. Kidney Int 43, 1160-1178.
Bonventre, J. V., and Weinberg, J. M. (2003). Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14, 2199-2210.
Bonventre, J. V., and Zuk, A. (2004). Ischemic acute renal failure: an inflammatory disease? Kidney Int 66, 480-485.
Boonstra, A., Asselin-Paturel, C., Gilliet, M., Crain, C., Trinchieri, G., Liu, Y. J., and O'Garra, A. (2003). Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 197, 101-109.
Brivio, F., Lissoni, P., Rovelli, F., Nespoli, A., Uggeri, F., Fumagalli, L., and Gardani, G. (2002). Effects of IL-2 preoperative immunotherapy on surgery-induced changes in angiogenic regulation and its prevention of VEGF increase and IL-12 decline. Hepatogastroenterology 49, 385-387.
Brodsky, S. V., Yamamoto, T., Tada, T., Kim, B., Chen, J., Kajiya, F., and Goligorsky, M. S. (2002). Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 282, F1140-1149.
Cella, M., Jarrossay, D., Facchetti, F., Alebardi, O., Nakajima, H., Lanzavecchia, A., and Colonna, M. (1999). Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5, 919-923.
Chomarat, P., Banchereau, J., Davoust, J., and Palucka, A. K. (2000). IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1, 510-514.
Cyster, J. G. (2005). Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23, 127-159.
Daemen, M. A., van't Veer, C., Wolfs, T. G., and Buurman, W. A. (1999). Ischemia/reperfusion-induced IFN-gamma up-regulation: involvement of IL-12 and IL-18. J Immunol 162, 5506-5510.
Dagher, P. C. (2004). Apoptosis in ischemic renal injury: roles of GTP depletion and p53. Kidney Int 66, 506-509.
Daha, M. R., and van Kooten, C. (2000). Is the proximal tubular cell a proinflammatory cell? Nephrol Dial Transplant 15 Suppl 6, 41-43.
de Bruijn, M. F., Slieker, W. A., van der Loo, J. C., Voerman, J. S., van Ewijk, W., and Leenen, P. J. (1994). Distinct mouse bone marrow macrophage precursors identified by differential expression of ER-MP12 and ER-MP20 antigens. Eur J Immunol 24, 2279-2284.
De Greef, K. E., Ysebaert, D. K., Dauwe, S., Persy, V., Vercauteren, S. R., Mey, D., and De Broe, M. E. (2001). Anti-B7-1 blocks mononuclear cell adherence in vasa recta after ischemia. Kidney Int 60, 1415-1427.
De Vecchi, E., Lubatti, L., Beretta, C., Ferrero, S., Rinaldi, P., Galli Kienle, M., Trazzi, R., and Paroni, R. (1998). Protection from renal ischemia-reperfusion injury by the 2-methylaminochroman U83836E. Kidney Int 54, 857-863.
Donnahoo, K. K., Meldrum, D. R., Shenkar, R., Chung, C. S., Abraham, E., and Harken, A. H. (2000). Early renal ischemia, with or without reperfusion, activates NFkappaB and increases TNF-alpha bioactivity in the kidney. J Urol 163, 1328-1332.
Donnahoo, K. K., Meng, X., Ayala, A., Cain, M. P., Harken, A. H., and Meldrum, D. R. (1999a). Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am J Physiol 277, R922-929.
Donnahoo, K. K., Shames, B. D., Harken, A. H., and Meldrum, D. R. (1999b). Review article: the role of tumor necrosis factor in renal ischemia-reperfusion injury. J Urol 162, 196-203.
Douek, D. C., McFarland, R. D., Keiser, P. H., Gage, E. A., Massey, J. M., Haynes, B. F., Polis, M. A., Haase, A. T., Feinberg, M. B., Sullivan, J. L., et al. (1998). Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690-695.
Engering, A., Van Vliet, S. J., Geijtenbeek, T. B., and Van Kooyk, Y. (2002). Subset of DC-SIGN(+) dendritic cells in human blood transmits HIV-1 to T lymphocytes. Blood 100, 1780-1786.
Fearnley, D. B., Whyte, L. F., Carnoutsos, S. A., Cook, A. H., and Hart, D. N. (1999). Monitoring human blood dendritic cell numbers in normal individuals and in stem cell transplantation. Blood 93, 728-736.
Flores, J., DiBona, D. R., Beck, C. H., and Leaf, A. (1972). The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute. J Clin Invest 51, 118-126.
Friedewald, J. J., and Rabb, H. (2004). Inflammatory cells in ischemic acute renal failure. Kidney Int 66, 486-491.
Giordano, D., Magaletti, D. M., Clark, E. A., and Beavo, J. A. (2003). Cyclic nucleotides promote monocyte differentiation toward a DC-SIGN+ (CD209) intermediate cell and impair differentiation into dendritic cells. J Immunol 171, 6421-6430.
Gordon, S. (2003). Alternative activation of macrophages. Nat Rev Immunol 3, 23-35.
Gratzner, H. G. (1982). Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 218, 474-475.
Gueler, F., Gwinner, W., Schwarz, A., and Haller, H. (2004). Long-term effects of acute ischemia and reperfusion injury. Kidney Int 66, 523-527.
Halloran, P. F., Homik, J., Goes, N., Lui, S. L., Urmson, J., Ramassar, V., and Cockfield, S. M. (1997). The "injury response": a concept linking nonspecific injury, acute rejection, and long-term transplant outcomes. Transplant Proc 29, 79-81.
Hart, D. N. (1997). Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90, 3245-3287.
Havemann, K., Pujol, B. F., and Adamkiewicz, J. (2003). In vitro transformation of monocytes and dendritic cells into endothelial like cells. Adv Exp Med Biol 522, 47-57.
Hesselink, D. A., Vaessen, L. M., Hop, W. C., Schoordijk, W., Ijzermans, J. N., Baan, C. C., and Weimar, W. (2005). The effects of renal transplantation on circulating dendritic cells. Clin Exp Immunol 140, 384-393.
Ho, C. S., Lopez, J. A., Vuckovic, S., Pyke, C. M., Hockey, R. L., and Hart, D. N. (2001). Surgical and physical stress increases circulating blood dendritic cell counts independently of monocyte counts. Blood 98, 140-145.
Jassem, W., and Heaton, N. D. (2004). The role of mitochondria in ischemia/reperfusion injury in organ transplantation. Kidney Int 66, 514-517.
Kalinski, P., Schuitemaker, J. H., Hilkens, C. M., and Kapsenberg, M. L. (1998). Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol 161, 2804-2809.
Kaushal, G. P., Basnakian, A. G., and Shah, S. V. (2004). Apoptotic pathways in ischemic acute renal failure. Kidney Int 66, 500-506.
Kelly, K. J., Williams, W. W., Jr., Colvin, R. B., and Bonventre, J. V. (1994). Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci U S A 91, 812-816.
Kelly, K. J., Williams, W. W., Jr., Colvin, R. B., Meehan, S. M., Springer, T. A., Gutierrez-Ramos, J. C., and Bonventre, J. V. (1996). Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97, 1056-1063.
Kennedy, D. W., and Abkowitz, J. L. (1998). Mature monocytic cells enter tissues and engraft. Proc Natl Acad Sci U S A 95, 14944-14949.
Leonard, C. T., Soccal, P. M., Singer, L., Berry, G. J., Theodore, J., Holt, P. G., Doyle, R. L., and Rosen, G. D. (2000). Dendritic cells and macrophages in lung allografts: A role in chronic rejection? Am J Respir Crit Care Med 161, 1349-1354.
Leung, K. L., Tsang, K. S., Ng, M. H., Leung, K. J., Lai, P. B., Lee, J. F., and Lau, W. Y. (2003). Lymphocyte subsets and natural killer cell cytotoxicity after laparoscopically assisted resection of rectosigmoid carcinoma. Surg Endosc 17, 1305-1310.
Lieberthal, W., and Nigam, S. K. (1998). Acute renal failure. I. Relative importance of proximal vs. distal tubular injury. Am J Physiol 275, F623-631.
Linas, S. L., Shanley, P. F., Whittenburg, D., Berger, E., and Repine, J. E. (1988). Neutrophils accentuate ischemia-reperfusion injury in isolated perfused rat kidneys. Am J Physiol 255, F728-735.
MacDonald, K. P., Munster, D. J., Clark, G. J., Dzionek, A., Schmitz, J., and Hart, D. N. (2002). Characterization of human blood dendritic cell subsets. Blood 100, 4512-4520.
Meldrum, D. R., and Donnahoo, K. K. (1999). Role of TNF in mediating renal insufficiency following cardiac surgery: evidence of a postbypass cardiorenal syndrome. J Surg Res 85, 185-199.
Meldrum, K. K., Meldrum, D. R., Meng, X., Ao, L., and Harken, A. H. (2002). TNF-alpha-dependent bilateral renal injury is induced by unilateral renal ischemia-reperfusion. Am J Physiol Heart Circ Physiol 282, H540-546.
Molitoris, B. A., Leiser, J., and Wagner, M. C. (1997). Role of the actin cytoskeleton in ischemia-induced cell injury and repair. Pediatr Nephrol 11, 761-767.
Nelson, C. J., and Lysle, D. T. (1998). Severity, time, and beta-adrenergic receptor involvement in surgery-induced immune alterations. J Surg Res 80, 115-122.
Nielsen, S. D., Jeppesen, D. L., Kolte, L., Clark, D. R., Sorensen, T. U., Dreves, A. M., Ersboll, A. K., Ryder, L. P., Valerius, N. H., and Nielsen, J. O. (2001). Impaired progenitor cell function in HIV-negative infants of HIV-positive mothers results in decreased thymic output and low CD4 counts. Blood 98, 398-404.
Nikolic, T., de Bruijn, M. F., Lutz, M. B., and Leenen, P. J. (2003). Developmental stages of myeloid dendritic cells in mouse bone marrow. Int Immunol 15, 515-524.
Ooshiro, M., Sugishita, Y. I., Tanaka, H., Koide, K., Nagashima, M., and Katoh, R. (2004). Regulation of perioperative immunological changes following laparotomy: effects of biological response modifier (BRM) on surgical stress. Immunol Lett 93, 33-38.
Osugi, Y., Vuckovic, S., and Hart, D. N. (2002). Myeloid blood CD11c(+) dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes. Blood 100, 2858-2866.
Penfield, J. G., Dawidson, I. A., Ar'Rajab, A., Kielar, M. A., Jeyarajah, D. R., and Lu, C. Y. (1999a). Syngeneic renal transplantation increases the number of renal dendritic cells in the rat. Transpl Immunol 7, 197-200.
Penfield, J. G., Wang, Y., Li, S., Kielar, M. A., Sicher, S. C., Jeyarajah, D. R., and Lu, C. Y. (1999b). Transplant surgery injury recruits recipient MHC class II-positive leukocytes into the kidney. Kidney Int 56, 1759-1769.
Powell, T. J., Jenkins, C. D., Hattori, R., and MacPherson, G. G. (2003). Rat bone marrow-derived dendritic cells, but not ex vivo dendritic cells, secrete nitric oxide and can inhibit T-cell proliferation. Immunology 109, 197-208.
Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M., and Muller, W. A. (1999). Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753-761.
Reichmann, G., Schroeter, M., Jander, S., and Fischer, H. G. (2002). Dendritic cells and dendritic-like microglia in focal cortical ischemia of the mouse brain. J Neuroimmunol 129, 125-132.
Rissoan, M. C., Soumelis, V., Kadowaki, N., Grouard, G., Briere, F., de Waal Malefyt, R., and Liu, Y. J. (1999). Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183-1186.
Robert, C., Fuhlbrigge, R. C., Kieffer, J. D., Ayehunie, S., Hynes, R. O., Cheng, G., Grabbe, S., von Andrian, U. H., and Kupper, T. S. (1999). Interaction of dendritic cells with skin endothelium: A new perspective on immunosurveillance. J Exp Med 189, 627-636.
Rondelli, D., Abbasian, J., Arpinati, M., Panaro, F., Porubsky, M., Manzelli, A., Oberholzer, J., Benedetti, E., and Testa, G. (2005). Different reconstitution of peripheral blood lymphocytes and dendritic cells in liver and kidney transplant patients. Transplant Proc 37, 49-50.
Rosenzwajg, M., Jourquin, F., Tailleux, L., and Gluckman, J. C. (2002). CD40 ligation and phagocytosis differently affect the differentiation of monocytes into dendritic cells. J Leukoc Biol 72, 1180-1189.
Rossi, M., and Young, J. W. (2005). Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol 175, 1373-1381.
Rutault, K., Alderman, C., Chain, B. M., and Katz, D. R. (1999). Reactive oxygen species activate human peripheral blood dendritic cells. Free Radic Biol Med 26, 232-238.
Sablotzki, A., Dehne, M., Welters, I., Menges, T., Lehmann, N., Gorlach, G., Osmer, C., and Hempelmann, G. (1997). Alterations of the cytokine network in patients undergoing cardiopulmonary bypass. Perfusion 12, 393-403.
Saikumar, P., and Venkatachalam, M. A. (2003). Role of apoptosis in hypoxic/ischemic damage in the kidney. Semin Nephrol 23, 511-521.
Sallusto, F., and Lanzavecchia, A. (1994). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179, 1109-1118.
Sallusto, F., and Lanzavecchia, A. (1999). Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J Exp Med 189, 611-614.
Shortman, K., and Liu, Y. J. (2002). Mouse and human dendritic cell subtypes. Nat Rev Immunol 2, 151-161.
Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P. A., Shah, K., Ho, S., Antonenko, S., and Liu, Y. J. (1999). The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835-1837.
Soltoff, S. P. (1986). ATP and the regulation of renal cell function. Annu Rev Physiol 48, 9-31.
Steinman, R. M. (1991). The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9, 271-296.
Steinman, R. M., Hawiger, D., and Nussenzweig, M. C. (2003). Tolerogenic dendritic cells. Annu Rev Immunol 21, 685-711.
Sunderkotter, C., Nikolic, T., Dillon, M. J., Van Rooijen, N., Stehling, M., Drevets, D. A., and Leenen, P. J. (2004). Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172, 4410-4417.
Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335-376.
Terasaki, P. I., Cecka, J. M., Gjertson, D. W., and Takemoto, S. (1995). High survival rates of kidney transplants from spousal and living unrelated donors. N Engl J Med 333, 333-336.
Thadhani, R., Pascual, M., and Bonventre, J. V. (1996). Acute renal failure. N Engl J Med 334, 1448-1460.
Trinchieri, G. (1993). Interleukin-12 and its role in the generation of TH1 cells. Immunol Today 14, 335-338.
Tullius, S. G., Heemann, U., Hancock, W. W., Azuma, H., and Tilney, N. L. (1994). Long-term kidney isografts develop functional and morphologic changes that mimic those of chronic allograft rejection. Ann Surg 220, 425-432; discussion 432-425.
Verhasselt, V., Goldman, M., and Willems, F. (1998). Oxidative stress up-regulates IL-8 and TNF-alpha synthesis by human dendritic cells. Eur J Immunol 28, 3886-3890.
Verkade, M. A., van de Wetering, J., Klepper, M., Vaessen, L. M., Weimar, W., and Betjes, M. G. (2004). Peripheral blood dendritic cells and GM-CSF as an adjuvant for hepatitis B vaccination in hemodialysis patients. Kidney Int 66, 614-621.
Vieira, P. L., de Jong, E. C., Wierenga, E. A., Kapsenberg, M. L., and Kalinski, P. (2000). Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J Immunol 164, 4507-4512.
Walker, C. B., Bruce, D. M., Heys, S. D., Gough, D. B., Binnie, N. R., and Eremin, O. (1999). Minimal modulation of lymphocyte and natural killer cell subsets following minimal access surgery. Am J Surg 177, 48-54.
Willinger, C. C., Schramek, H., Pfaller, K., and Pfaller, W. (1992). Tissue distribution of neutrophils in postischemic acute renal failure. Virchows Arch B Cell Pathol Incl Mol Pathol 62, 237-243.
Womer, K. L., Peng, R., Patton, P. R., Kaleem, A., Bucci, M., Murawski, M. R., Schold, J., Efron, P. A., Hemming, A. W., Srinivas, T. R., et al. (2005). The effects of renal transplantation on circulating precursor dendritic cells. Transplant Proc 37, 3-6.
Xie, J., Wang, Y., Freeman, M. E., 3rd, Barlogie, B., and Yi, Q. (2003). Beta 2-microglobulin as a negative regulator of the immune system: high concentrations of the protein inhibit in vitro generation of functional dendritic cells. Blood 101, 4005-4012.
Zhou, T., Sun, G. Z., Zhang, M. J., Chen, J. L., Zhang, D. Q., Hu, Q. S., Chen, Y. Y., and Chen, N. (2005). Role of adhesion molecules and dendritic cells in rat hepatic/renal ischemia-reperfusion injury and anti-adhesive intervention with anti-P-selectin lectin-EGF domain monoclonal antibody. World J Gastroenterol 11, 1005-1010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文