跳到主要內容

臺灣博碩士論文加值系統

(44.211.34.178) 您好!臺灣時間:2024/11/12 14:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許玉停
研究生(外文):Yu-Ting Hsu
論文名稱:大腦皮質神經元發育期間生長相關蛋白GAP-43與Gephyrin之相互作用探討
論文名稱(外文):Protein-Protein Interaction of GAP-43 and Gephyrin in Developing Cortical Neurons
指導教授:李怡萱李怡萱引用關係
指導教授(外文):Yi-Hsuan Lee
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:78
中文關鍵詞:大腦皮質神經元發育期蛋白作用
外文關鍵詞:developing cortical neuronsgrowth association protein GAP-43gephyrin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
生長相關蛋白(Growth association protein 43 ;GAP-43) 是一種位於突觸前末梢的蛋白,在神經發育以及神經修復過程中參與軸突的延伸、以及引導生長錐生長方向。先前的研究發現,PKC可促進GAP-43的磷酸化,進而對神經生長以及細胞可塑性有促進的作用。我們使用免疫沉澱和質譜儀(MALTI-TOF)的實驗方法,發現GAP-43會與一個位於突觸後膜上,具有聚集抑制性受器功能的蛋白質—gephyrin結合。Gephyrin藉著與glycine receptor  subunit 以及GABAA receptor2 subunit結合,來聚集glycine 及GABAA receptor。我們的實驗顯示在畸胎瘤分化的神經細胞或是發育中的大腦皮質神經元細胞, 其細胞膜表面皆可發現有gephnyrin的表現及聚集現象。然而,我們更進一步探討PKC抑制劑Ro-318220對於GAP-43以及gephyrin表現量的影響,結果發現,Ro-318220會增加發育初期的神經細胞(4 DIV)GAP-43的表現量,但在發育晚期神經細胞 (8 DIV)則有抑制的效果。Ro-318220對於gephyrin的表現則無顯著的影響。再者,在共同免疫沉澱(co-immunoprecipitation)的實驗結果發現,投予發育中的神經細胞Ro-318220 24小時會增加GAP-43和gephyrin結合的程度,且在共軛螢光免疫雙染的實驗中亦發現,PKC抑制劑會使GAP-43集中在細胞體,並與gephyrin有共位(colocolization)的現象。反之,Ro-318220會造成gephyrin與GABAAR2 subunit的結合程度降低,而且,我們進一步發現給予Ro-318220會造成GABA在發育神經元所引發的胞內鈣離子濃度升高反應消失。以上結果顯示,GAP-43受PKC調控的活性,不但會影響神經生長,也可能會藉著與gephyrin的交互作用,影響GABAA receptor的功能。
Abstract
Growth association protein (GAP-43) is a presynaptic protein that involved in axon elongation, growth cone guidance and regeneration during development. Previous studies indicate that protein kinase C (PKC) could facilitate GAP-43 phosphorylation to promote neurite outgrowth and plasticity. In this study, we applied immunoprecipitation followed by MALTI-TOF (Matrix-assisted laser desorption/ ionzation time-of-flight) mass spectrometry to examine if other proteins could interact with GAP-43 to mediate neuronal development. Our results show that one of the GAP-43-interacting proteins is an inhibitory receptor clustering protein namely gephyrin. Gephyrin cluster the inhibitory receptors such as glycine receptor and GABAA receptor (-amino-butyric acid type A receptor) by binding with glycine receptor subunit and GABAA receptor 2 subunit. We found that gephyrin was expressed on the surface of both teratocarcinoma-derived neurons and primary cultured developing cortical neurons. We further examined the effect of PKC inhibitor Ro-31-8220 on the expression of GAP-43 and gephyrin expression. It was found that Ro-31-8220 increased the expression GAP-43 at early stage (4 days in vitro) but decreased at late stage (8 days in vitro ), but had no effect on gephyrin expression. Furthermore, co-immunoprecipitation studies show that Ro-31-8220 and MAP kinase inhibitor PD-98059, but not PKA inhibitor Rp-8-Br-cAMPs promoted association of GAP-43 and gephyrin. Furthermore, immunofluorescent double labeling with confocal microscopy shows that Ro-31-8220 treatment result in loss of axonal distribution of GAP-43 and the colocolization of GAP-43 and gephyrin become more apparent in soma. On the other hand, inhibition of PKC resulted in dissociation of gephyrin from GABAA R 2. Indeed PKC inhibitor abolished GABA-induced elevation of intracellular calcium concentration. These results implicate that GAP-43 with the activity governed by PKC, is not only crucial for neurite outgrowth, but might also contribute to GABAergic synaptogenenesis control via PKC-dependent dissociation from the GABAA receptor clustering protein gephyrin.
目錄
中文摘要---------------------------- I
英文摘要---------------------------- III
前言-------------------------------- 1
實驗方法與材料---------------------- 15
實驗結果---------------------------- 40
討論-------------------------------- 64
結論-------------------------------- 68
參考文獻---------------------------- 69
Aarts, L. H., Schrama, L. H., Hage, W. J., Bos, J. L., Gispen, W. H., and Schotman, P. (1998). B-50/GAP-43-induced Formation of Filopodia Depends on Rho-GTPase. Mol Biol Cell 9, 1279-1292.

Altschuler, R. A., Betz, H., Parakkal, M. H., Reeks, K. A., and Wenthold, R. J. (1986). Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Res 369, 316-320.

Apel, E. D., Litchfield, D. W., Clark, R. H., Krebs, E. G., and Storm, D. R. (1991). Phosphorylation of neuromodulin (GAP-43) by casein kinase II. Identification of phosphorylation sites and regulation by calmodulin. The Journal Of Biological Chemistry 266, 10544-10551.

Baer, K., Essrich, C., Balsiger, S., Wick, M. J., Harris, R. A., Fritschy, J.-M., and Luscher, B. (2000). Rescue o fgamma2 subunit-deficient mice by transgenic overexpression of the GABAA receptor gamma;2S or gamma 2L subunit isoforms. European Journal of Neuroscience 12, 2639-2643.

Benowitz, L. I., and Routtenberg, A. (1997). GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends in Neurosciences 20, 84-91.

Brandon, N. J., Delmas, P., Kittler, J. T., McDonald, B. J., Sieghart, W., Brown, D. A., Smart, T. G., and Moss, S. J. (2000). GABAA Receptor Phosphorylation and Functional Modulation in Cortical Neurons by a Protein Kinase C-dependent Pathway. J Biol Chem 275, 38856-38862.

Chapell, R., Bueno, O. F., Alvarez-Hernandez, X., Robinson, L. C., and Leidenheimer, N. J. (1998). Activation of protein kinase C induces gamma-aminobutyric acid type A receptor internalization in Xenopus oocytes. J Biol Chem 273, 32595-32601.

Chiba, C., Matsushima, O., Muneoka, Y., and Saito, T. (1997). Time course of appearance of GABA and GABA receptors during retinal regeneration in the adult newt. Developmental Brain Research 98, 204-210.

Chou, M. M., and Blenis, J. (1996). The 70 kDa S6 Kinase Complexes with and Is Activated by the Rho Family G Proteins Cdc42 and Rac1. Cell 85, 573-583.
Cinar, H., and Barnes, E. M. (2001). Clathrin-Independent Endocytosis of GABAA Receptors in HEK 293 Cells. Biochemistry 40, 14030-14036.

Connolly, C. N., Kittler, J. T., Thomas, P., Uren, J. M., Brandon, N. J., Smart, T. G., and Moss, S. J. (1999). Cell Surface Stability of gamma -Aminobutyric Acid Type A Receptors. DEPENDENCE ON PROTEIN KINASE C ACTIVITY AND SUBUNIT COMPOSITION. J Biol Chem 274, 36565-36572.

Craig, A. M., Banker, G., Chang, W., McGrath, M. E., and Serpinskaya, A. S. (1996). Clustering of Gephyrin at GABAergic but Not Glutamatergic Synapses in Cultured Rat Hippocampal Neurons. J Neurosci 16, 3166-3177.

Doster, S. K., Lozano, A. M., Aguayo, A. J., and Willard, M. B. (1991). Expression of the growth-associated protein GAP-43 in adult rat retinal ganglion cells following axon injury. Neuron 6, 635-647.

Ehlers, M. D., Mammen, A. L., Lau, L. F., and Huganir, R. L. (1996). Synaptic targeting of glutamate receptors. Curr Opin Cell Biol 8, 484-489.

Erik W. Dent, K. F. M. (1998). Distribution of phosphorylated GAP-43 (neuromodulin) in growth cones directly reflects growth cone behavior. Journal of Neurobiology 35, 287-299.

Essrich, C., Lorez, M., Benson, J. A., Fritschy, J.-M., and Luscher, B. (1998). Postsynaptic clustering of major GABAA receptor subtypes requires the [gamma]2 subunit and gephyrin. Nat Neurosci 1, 563-571.

Holtmaat, A. J., Dijkhuizen, P. A., Oestreicher, A. B., Romijn, H. J., Van der Lugt, N. M., Berns, A., Margolis, F. L., Gispen, W. H., and Verhaagen, J. (1995). Directed expression of the growth-associated protein B-50/GAP-43 to olfactory neurons in transgenic mice results in changes in axon morphology and extraglomerular fiber growth. J Neurosci 15, 7953-7965.

Kahl, J., and Campanelli, J. T. (2003). A Role for the Juxtamembrane Domain of beta -Dystroglycan in Agrin-Induced Acetylcholine Receptor Clustering. J Neurosci 23, 392-402.

Kaupmann, K., Huggel, K., Heid, J., Flor, P. J., Bischoff, S., Mickel, S. J., McMaster, G., Angst, C., Bittiger, H., Froestl, W., and Bettler, B. (1997). Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239-246.

Kim, E., Cho, K.-O., Rothschild, A., and Sheng, M. (1996). Heteromultimerization and NMDA Receptor-Clustering Activity of Chapsyn-110, a Member of the PSD-95 Family of Proteins. Neuron 17, 103-113.

Kirsch, J., and Betz, H. (1995). The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J Neurosci 15, 4148-4156.

Kirsch, J., and Betz, H. (1998). Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392, 717-720.

Kirsch, J., Wolters, I., Triller, A., and Betz, H. (1993). Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745-748.

Kneussel, M., and Betz, H. (2000). Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends in Neurosciences 23, 429-435.


Mackay, D. J., and Hall, A. (1998). Rho GTPases. J Biol Chem 273, 20685-20688.
Mahoney, C. W., Seki, K., and Huang, K.-P. (1995). Phosphorylation of MARCKS, neuromodulin, and neurogranin by protein kinase C exhibits differential responses to diacylglycerols. Cellular Signalling 7, 679-685.

McDonald, B. J., and Moss, S. J. (1997). Conserved phosphorylation of the intracellular domains of GABAA receptor[beta]2 and [beta]3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin type II-dependent protein kinase. Neuropharmacology 36, 1377-1385.

Mehta, A. K., and Ticku, M. K. (1999). An update on GABAA receptors. Brain Res Brain Res Rev 29, 196-217.

Meier, J., Akyeli, J., Kirischuk, S., and Grantyn, R. (2003). GABAA receptor activity and PKC control inhibitory synaptogenesis in CNS tissue slices. Molecular and Cellular Neuroscience 23, 600-613.

Meier, J., and Grantyn, R. (2004). Preferential accumulation of GABAA receptor {gamma}2L, not {gamma}2S, cytoplasmic loops at rat spinal cord inhibitory synapses. J Physiol (Lond) 559, 355-365.

Meiri, K. F., and Gordon-Weeks, P. R. (1990). GAP-43 in growth cones is associated with areas of membrane that are tightly bound to substrate and is a component of a membrane skeleton subcellular fraction. J Neurosci 10, 256-266.

Meiri, K. F., Saffell, J. L., Walsh, F. S., and Doherty, P. (1998). Neurite Outgrowth Stimulated by Neural Cell Adhesion Molecules Requires Growth-Associated Protein-43 (GAP-43) Function and Is Associated with GAP-43 Phosphorylation in Growth Cones. J Neurosci 18, 10429-10437.

Meyer, G., Kirsch, J., Betz, H., and Langosch, D. (1995). Identification of a gephyrin binding motif on the glycine receptor [beta] subunit. Neuron 15, 563-572.

Meyer, R. L., Miotke, J. A., and Benowitz, L. I. (1994). Injury induced expression of growth-associated protein-43 in adult mouse retinal ganglion cells In vitro. Neuroscience 63, 591-602.

Moss, S. J., Doherty, C. A., and Huganir, R. L. (1992). Identification of the cAMP-dependent protein kinase and protein kinase C phosphorylation sites within the major intracellular domains of the beta 1, gamma 2S, and gamma 2L subunits of the gamma-aminobutyric acid type A receptor. J Biol Chem 267, 14470-14476.

Moss, S. J., and Smart, T. G. (1996). Modulation of amino acid-gated ion channels by protein phosphorylation. Int Rev Neurobiol 39, 1-52.

Nielander, H. B., French, P., Oestreicher, A. B., Gispen, W. H., and Schotman, P. (1993). Spontaneous morphological changes by overexpression of the growth-associated protein B-50/GAP-43 in a PC12 cell line. Neurosci Lett 162, 46-50.

Oestreicher, A. B., De Graan, P. N. E., Gispen, W. H., Verhaagen, J., and Schrama, L. H. (1997). B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Progress in Neurobiology 53, 627-686.

Prior, P., Schmitt, B., Grenningloh, G., Pribilla, I., Multhaup, G., Beyreuther, K., Maulet, Y., Werner, P., Langosch, D., Kirsch, J., and et al. (1992). Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8, 1161-1170.

Sassoe-Pognetto, M., Kirsch, J., Grunert, U., Greferath, U., Fritschy, J. M., Mohler, H., Betz, H., and Wassle, H. (1995). Colocalization of gephyrin and GABAA-receptor subunits in the rat retina. J Comp Neurol 357, 1-14.

Schaechter, J. D., and Benowitz, L. I. (1993). Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes. Journal of Neuroscience 13, 4361-4371.

Sheng, M., and Wyszynski, M. (1997). Ion channel targeting in neurons. Bioessays 19, 847-853.

Sola, M., Bavro, V. N., Timmins, J., Franz, T., Ricard-Blum, S., Schoehn, G., Ruigrok, R. W., Paarmann, I., Saiyed, T., O'Sullivan, G. A., et al. (2004). Structural basis of dynamic glycine receptor clustering by gephyrin. Embo J 23, 2510-2519.

Sola, M., Kneussel, M., Heck, I. S., Betz, H., and Weissenhorn, W. (2001). X-ray Crystal Structure of the Trimeric N-terminal Domain of Gephyrin. J Biol Chem 276, 25294-25301.

Tejero-Diez, P., Rodriguez-Sanchez, P., Martin-Cofreces, N. B., and Diez-Guerra, F. J. (2000). bFGF Stimulates GAP-43 Phosphorylation at Ser41 and Modifies Its Intracellular Localization in Cultured Hippocampal Neurons. Molecular and Cellular Neuroscience 16, 766-780.

Triller, A., Cluzeaud, F., and Korn, H. (1987). gamma-Aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. J Cell Biol 104, 947-956.

Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H., and Korn, H. (1985). Distribution of glycine receptors at central synapses: an immunoelectron microscopy study. J Cell Biol 101, 683-688.

Whiting, P., McKernan, R. M., and Iversen, L. L. (1990). Another Mechanism for Creating Diversity in {gamma}-Aminobutyrate Type A Receptors: RNA Splicing Directs Expression of Two Forms of {gamma}2 Subunit, One of Which Contains a Protein Kinase C Phosphorylation Site. PNAS 87, 9966-9970.

Widmer, F., and Caroni, P. (1993). Phosphorylation-site mutagenesis of the growth-associated protein GAP- 43 modulates its effects on cell spreading and morphology. J Cell Biol 120, 503-512.

Zuber, M. X., Goodman, D. W., Karns, L. R., and Fishman, M. C. (1989). The neuronal growth-associated protein GAP-43 induces filopodia in non-neuronal cells. Science 244, 1193-1195.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊