跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 00:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡淑玫
研究生(外文):Shu-Mei Tsai
論文名稱:Quercetin-3,5,7,3',4'-O-pentamethylether抑制卵蛋白-引起的氣道過度反應
論文名稱(外文):Quercetin-3,5,7,3',4'-O-pentamethylether inhibits ovalbumin-induced airway hyperresponsiveness
指導教授:柯文昌柯文昌引用關係
指導教授(外文):Wun-Chang Ko, Ph. D.
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:44
中文關鍵詞:巨噬細胞小白鼠白血球選擇性抗氣喘
外文關鍵詞:Quercetin-3573''4''-O-pentamethylether+ovalbumin+airway hyperresponsiveness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Quercetin-3,5,7,3',4'-O-pentamethylether (QPME) 對PDE1-4抑制的IC50值< 10 μM,其PDE4H/PDE4L為11,與目前臨床試驗中最具潛力的抗氣喘藥AWD 12-281相同,本篇實驗將進一步探討QPME是否具有抗氣喘的功效。
在vivo方面,將BALB/c小白鼠腹腔內注射卵蛋白 (ovalbumin, OVA),使其敏感化,再以卵蛋白氣化噴霧二次激釁 (secondary challenge) 後,利用整體體積描述器 (whole-body plethysmograph) 來分析因 methacholine (MCh, 6.25-50 mg/ml) 引起的氣道過度反應 (airway hyperresponsiveness response,AHR),結果顯示QPME (10~100 mol/kg, i.p.) 能劑量依存性地減少因MCh (25~50 mg/ml) 噴霧而增加的 Penh值,QPME (100 mol/kg) 亦能有意義地抑制因 MCh (25 mg/ml) 增加的Penh值,QPME (10-100 mol/kg) 也有意義地抑制肺泡灌流液 (BALF) 之總發炎細胞數、巨噬細胞、淋巴球、嗜中性白血球及嗜酸性白血球,並有意義地降低 IL-2、IL-4、IL-5、IFN-γ及TNF- 的釋放,雖然有些例外,即最低劑量不能抑制總發炎細胞數、巨噬細胞、IL-5及IFN-γ的釋放。
在vitro方面,QPME (30~100 M) 能有意義地鬆弛基本張力及抑制 OVA (10~100 g/ml) 引起的敏感化天竺鼠氣管之收縮。
由Lineweaver-Burk分析發現QPME (3~30 M) 對PDE1、PDE2、PDE3及PDE4呈現競爭性的抑制,所得Ki值分別為0.89, 1.07, 0.53及0.52 M,彼此間無意義差,顯示無特殊選擇性,可能由於無選擇性抑制PDE1-4,而增加細胞內cAMP,所以才有抗發炎及抗氣喘的功效。
Quercetin-3,5,7,3',4'-O-pentamethylether (QPME) inhibited activities of PDE1~4, with IC50 values < 10 M. The PDE4H/PDE4L ratio of QPME is about 11, equal to that of AWD 12-281 which is in clinical trial phase II. QPME whether possesses anti-asthmatic effect is the aim of this investigation.
In vivo, female BALB/c mice were sensitized by an intraperitoneal injection of ovalbumin (OVA), then challenged via the airway by ultrasonic nebulization of 1% OVA two periods (secondary challenge). After secondary challenge, the airway hyperresponsiveness (AHR) was measured in unrestrained animals, nebulized with methacholine (MCh, 6.25~50 mg/ml), by barometric plethysmography using a whole-body plethysmograph. In the present results, QPME (10~100 mol/kg, i.p.) dose-dependently attenuated the enhanced pause (Penh) value induced by MCh (25~50 mg/ml). Furthermore, QPME (100 mol/kg, i.p.) also significantly inhibited MCh (25 mg/ml)-induced Penh value. QPME (10-100 mol/kg, i.p.) also significantly inhibited total inflammatory cells, macrophages, neutrophils , lymphocytes, and eosinophils in BALF after determination of Penh values. It also significantly attenuated the release of IL-2, IL-4, IL-5, IFN-γ, and TNF-α, with some exceptions that QPME at the least dose did not suppress releases of total inflammatory cells, macrophages, IL-5, and IFN-γ.
In vitro, QPME (30~100 M) significantly relaxed baseline tension and inhibited cumulative OVA (10~100 μg/ml)-induced contractions in isolated sensitized guinea pig trachealis.
According to the Lineweaver-Burk analysis, QPME (3~30 M) competitively inhibited PDE1, PDE2, PDE3, and PDE4 activities. The Ki values were 0.89, 1.07, 0.53, and 0.52 M which did not differ each other. Owing to QPME did not selectively inhibited PDE1-4, and resulted increase of intracellular cAMP, it may possess anti-inflammatory and anti-asthmatic effects.
圖表..........................3
縮寫..........................5
中文摘要.......................7
英文摘要.......................8
壹、緒論.......................9
貳、實驗材料與方法 ............11
參、結果......................21
肆、討論......................24
伍、參考文獻..................28
圖...........................34
表...........................43
圖解.........................44
1.Bousquet J, Jeffery PK, Busse WW, Johnson M, and Vignola AM, Asthma. From bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care Med. 161: 1720-1745, 2000.
2.Fireman P, Understanding asthma pathophysiology. Allergy Asthma Proc. 24: 79-83, 2003.
3.Joos GF, O'Connor B, Anderson SD, Chung F, Cockcroft DW, Dahlen B, DiMaria G, Foresi A, Hargreave FE, Holgate ST, Inman M, Lotvall J, Magnussen H, Polosa R, Postma DS, and Riedler J, Indirect airway challenges. Eur. Respir. J. 21: 1050-1068, 2003.
4.Spicuzza L, Bonfiglio C, and Polosa R, Research applications and implications of adenosine in diseased airways. Trends Pharmacol. Sci. 24: 409-413, 2003.
5.Townley RG and Horiba M, Airway hyperresponsiveness: a story of mice and men and cytokines. Clin. Rev. Allergy Immunol. 24: 85-110, 2003.
6.Bundschuh DS, Eltze M, Barsig J, Wollin L, Hatzelmann A, and Beume R, In vivo efficacy in airway disease models of roflumilast, a novel orally active PDE4 inhibitor. J. Pharmacol. Exp. Ther. 297: 280-290, 2001.
7.Jacob C, Martin-Chouly C, and Lagente V, Type 4 phosphodiesterase-dependent pathways: role in inflammatory processes. Therapie 57: 163-168, 2002.
8.Essayan DM, Cyclic nucleotide phosphodiesterase (PDE) inhibitors and immunomodulation. Biochem. Pharmacol. 57: 965-973, 1999.
9.Giembycz MA, Development status of second generation PDE4 inhibitors for asthma and COPD: the story so far. Monaldi Arch. Chest Dis. 57: 48-64, 2002.
10.Torphy TJ, Barnette MS, Underwood DC, Griswold DE, Christensen SB, Murdoch RD, Nieman RB, and Compton CH, Ariflo (SB 207499), a second generation phosphodiesterase 4 inhibitor for the treatment of asthma and COPD: from concept to clinic. Pulm. Pharmacol. Ther. 12: 131-135, 1999.
11.Schmidt D, Dent G, and Rabe KF, Selective phosphodiesterase inhibitors for the treatment of bronchial asthma and chronic obstructive pulmonary disease. Clin. Exp. Allergy 29 Suppl. 2: 99-109, 1999.
12.Giembycz MA and Dent G, Prospects for selective cyclic nucleotide phosphodiesterase inhibitors in the treatment of bronchial asthma. Clin. Exp. Allergy 22: 337-344, 1992.
13.Ko WC, Kuo SW, Sheu JR, Lin CH, Tzeng SH, and Chen CM, Relaxant effects of quercetin methyl ether derivatives in isolated guinea pig trachea and their structure-activity relationships. Planta Med. 65: 273-275, 1999.
14.Ko WC, Wang HL, Lei CB, Shih CH, Chung MI, and Lin CN, Mechanisms of relaxant action of 3-O-methylquercetin in isolated guinea pig trachea. Planta Med. 68: 30-35, 2002.
15.Ko WC, Shih CM, Chen MC, Lai YH, Chen JH, Chen CM, and Lin CN, Suppressive effects of 3-O-methylquercetin on ovalbumin-induced airway hyperresponsiveness. Planta Med. 70: 1123-1127, 2004.
16.Ko WC, Chen MC, Wang SH, Lai YH, Chen JH, and Lin CN, 3-O-methylquercetin more selectively inhibits phosphodiesterase subtype 3. Planta Med. 69: 310-315, 2003.
17.Thompson WJ and Appleman MM, Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry 10: 311-316, 1971.
18.Ahn HS, Crim W, Romano M, Sybertz E, and Pitts B, Effects of selective inhibitors on cyclic nucleotide phosphodiesterases of rabbit aorta. Biochem. Pharmacol. 38: 3331-3339, 1989.
19.Podzuweit T, Nennstiel P, and Muller A, Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell. Signal. 7: 733-738, 1995.
20.Harrison SA, Reifsnyder DH, Gallis B, Cadd GG, and Beavo JA, Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol. Pharmacol. 29: 506-514, 1986.
21.Reeves ML, Leigh BK, and England PJ, The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem. J. 241: 535-541, 1987.
22.Gillespie PG and Beavo JA, Inhibition and stimulation of photoreceptor phosphodiesterases by dipyridamole and M&B 22,948. Mol. Pharmacol. 36: 773-781, 1989.
23.Bradford MM, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254, 1976.
24.Kanehiro A, Ikemura T, Makela MJ, Lahn M, Joetham A, Dakhama A, and Gelfand EW, Inhibition of phosphodiesterase 4 attenuates airway hyperresponsiveness and airway inflammation in a model of secondary allergen challenge. Am. J. Respir. Crit. Care Med. 163: 173-184, 2001.
25.Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG, and Gelfand EW, Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am. J. Respir. Crit. Care Med. 156: 766-775, 1997.
26.Underwood DC, Kotzer CJ, Bochnowicz S, Osborn RR, Luttmann MA, Hay DW, and Torphy TJ, Comparison of phosphodiesterase III, IV and dual III/IV inhibitors on bronchospasm and pulmonary eosinophil influx in guinea pigs. J. Pharmacol. Exp. Ther. 270: 250-259, 1994.
27.Busse WW and Lemanske RF, Jr., Asthma. N. Engl. J. Med. 344: 350-362, 2001.
28.Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, Ghiran S, Gerard NP, Yu C, Orkin SH, and Gerard C, A critical role for eosinophils in allergic airways remodeling. Science 305: 1776-1779, 2004.
29.Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, O'Neill KR, Protheroe C, Pero R, Nguyen T, Cormier SA, Lenkiewicz E, Colbert D, Rinaldi L, Ackerman SJ, Irvin CG, and Lee NA, Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305: 1773-1776, 2004.
30.Elias JA, Lee CG, Zheng T, Ma B, Homer RJ, and Zhu Z, New insights into the pathogenesis of asthma. J. Clin. Invest. 11: 291-297, 2003.
31.Kobayashi T, Miura T, Haba T, Sato M, Serizawa I, Nagai H, and Ishizaka K, An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model. J. Immunol. 164: 3855-3861, 2000.
32.Williams CM and Galli SJ, Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med. 192: 455-462, 2000.
33.Dabbagh K, Takeyama K, Lee HM, Ueki IF, Lausier JA, and Nadel JA, IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J. Immunol. 162: 6233-6237, 1999.
34.Lee KS, Lee HK, Hayflick JS, Lee YC, and Puri KD, Inhibition of phosphoinositide 3-kinase delta attenuates allergic airway inflammation and hyperresponsiveness in murine asthma model. FASEB J. 20: 455-465, 2006.
35.Pawankar R, Okuda M, Yssel H, Okumura K, and Ra C, Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J. Clin. Invest. 99: 1492-1499, 1997.
36.Moser R, Fehr J, and Bruijnzeel PL, IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. J. Immunol. 149: 1432-1438, 1992.
37.Seder RA, Paul WE, Davis MM, and Fazekas de St GB, The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 176: 1091-1098, 1992.
38.Fernandes DJ, Mitchell RW, Lakser O, Dowell M, Stewart AG, and Solway J, Do inflammatory mediators influence the contribution of airway smooth muscle contraction to airway hyperresponsiveness in asthma? J. Appl. Physiol. 95: 844-853, 2003.
39.Bourne HR, Lichtenstein LM, Melmon KL, Henney CS, Weinstein Y, and Shearer GM, Modulation of inflammation and immunity by cyclic AMP. Science 184: 19-28, 1974.
40.Moore AR and Willoughby DA, The role of cAMP regulation in controlling inflammation. Clin. Exp. Immunol. 101: 387-389, 1995.
41.Kammer GM, The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunol. Today 9: 222-229, 1988.
42.Kuehl FA, Jr., Zanetti ME, Soderman DD, Miller DK, and Ham EA, Cyclic AMP-dependent regulation of lipid mediators in white cells. A unifying concept for explaining the efficacy of theophylline in asthma. Am. Rev. Respir. Dis. 136: 210-213, 1987.
43.Dent G, Giembycz MA, Evans PM, Rabe KF, and Barnes PJ, Suppression of human eosinophil respiratory burst and cyclic AMP hydrolysis by inhibitors of type IV phosphodiesterase: interaction with the beta adrenoceptor agonist albuterol. J. Pharmacol. Exp. Ther. 271: 1167-1174, 1994.
44.Hatzelmann A, Tenor H, and Schudt C, Differential effects of non-selective and selective phosphodiesterase inhibitors on human eosinophil functions. Br. J. Pharmacol. 114: 821-831, 1995.
45.Nielson CP, Vestal RE, Sturm RJ, and Heaslip R, Effects of selective phosphodiesterase inhibitors on the polymorphonuclear leukocyte respiratory burst. J. Allergy Clin. Immunol. 86: 801-808, 1990.
46.Tenor H, Hatzelmann A, Kupferschmidt R, Stanciu L, Djukanovic R, Schudt C, Wendel A, Church MK, and Shute JK, Cyclic nucleotide phosphodiesterase isoenzyme activities in human alveolar macrophages. Clin. Exp. Allergy 25: 625-633, 1995.
47.Robicsek SA, Blanchard DK, Djeu JY, Krzanowski JJ, Szentivanyi A, and Polson JB, Multiple high-affinity cAMP-phosphodiesterases in human T-lymphocytes. Biochem. Pharmacol. 42: 869-877, 1991.
48.Tenor H, Staniciu L, Schudt C, Hatzelmann A, Wendel A, Djukanovic R, Church MK, and Shute JK, Cyclic nucleotide phosphodiesterases from purified human CD4+ and CD8+ T lymphocytes. Clin. Exp. Allergy 25: 616-624, 1995.
49.Giembycz MA, Corrigan CJ, Seybold J, Newton R, and Barnes PJ, Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T-lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2. Br. J. Pharmacol. 118: 1945-1958, 1996.
50.Fan CK, Phosphodiesterase inhibitors in airways disease. Eur. J. Pharmacol. 533: 110-117, 2006.
51.Emson CL, Bell SE, Jones A, Wisden W, and McKenzie AN, Interleukin (IL)-4-independent induction of immunoglobulin (Ig)E, and perturbation of T cell development in transgenic mice expressing IL-13. J. Exp. Med. 188: 399-404, 1998.
52.Trifilieff A, El-Hashim A, and Bertrand C, Time course of inflammatory and remodeling events in a murine model of asthma: effect of steroid treatment. Am. J. Physiol. Lung Cell. Mol. Physiol. 279: L1120-L1128, 2000.
53.Azzawi M, Bradley B, Jeffery PK, Frew AJ, Wardlaw AJ, Knowles G, Assoufi B, Collins JV, Durham S, and Kay AB, Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am. Rev. Respir. Dis. 142: 1407-1413, 1990.
54.Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, and Young IG, Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med. 183: 195-201, 1996.
55.Vargaftig BB and Singer M, Leukotrienes mediate murine bronchopulmonary hyperreactivity, inflammation, and part of mucosal metaplasia and tissue injury induced by recombinant murine interleukin-13. Am. J. Respir. Cell. Mol. Biol. 28: 410-419, 2003.
56.Hughes B, Howat D, Lisle H, Holbrook M, James T, Gozzard N, Blease K, Hughes P, Kingaby R, Warrellow G, Alexander R, Head J, Boyd E, Eaton M, Perry M, Wales M, Smith B, Owens R, Catterall C, Lumb S, Russell A, Allen R, Merriman M, Bloxham D, and Higgs G, The inhibition of antigen-induced eosinophilia and bronchoconstriction by CDP840, a novel stereo-selective inhibitor of phosphodiesterase type 4. Br. J. Pharmacol. 118: 1183-1191, 1996.
57.Howell RE, Sickels BD, and Woeppel SL, Pulmonary antiallergic and bronchodilator effects of isozyme-selective phosphodiesterase inhibitors in guinea pigs. J. Pharmacol. Exp. Ther. 264: 609-615, 1993.
58.Nagai H, Takeda H, Iwama T, Yamaguchi S, and Mori H, Studies on anti-allergic action of AH 21-132, a novel isozyme-selective phosphodiesterase inhibitor in airways. Jpn. J. Pharmacol. 67: 149-156, 1995.
59.Raeburn D, Underwood SL, Lewis SA, Woodman VR, Battram CH, Tomkinson A, Sharma S, Jordan R, Souness JE, Webber SE. Anti-inflammatory and bronchodilator properties of RP 73401, a novel and selective phosphodiesterase type IV inhibitor. Br. J. Pharmacol. 113: 1423-1431, 1994.
60.Underwood DC, Osborn RR, Novak LB, Matthews JK, Newsholme SJ, Undem BJ, Hand JM, and Torphy TJ, Inhibition of antigen-induced bronchoconstriction and eosinophil infiltration in the guinea pig by the cyclic AMP-specific phosphodiesterase inhibitor, rolipram. J. Pharmacol. Exp. Ther. 266: 306-313, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊