|
1. Finotto S and Glimcher L, T cell directives for transcriptional regulation in asthma. Springer Semin. Immunopathol. 25: 281-294, 2004. 2. Bacharier LB, Jabara H, and Geha RS, Molecular mechanisms of immunoglobulin E regulation. Int. Arch. Allergy Immunol. 115: 257-269, 1998. 3. Sasaki K and Manabe H, KF19514, a phosphodiesterase 4 and 1 inhibitor, inhibits TNF-alpha-induced GM-CSF production by a human bronchial epithelial cell line via inhibition of PDE4. Inflamm. Res. 53: 31-37, 2004. 4. Beavo JA, Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol. Rev. 75: 725-748, 1995. 5. Conti M and Jin SL, The molecular biology of cyclic nucleotide phosphodiesterases. Prog. Nucleic Acid Res. Mol. Biol. 63: 1-38, 1999. 6. Nicholson CD and Shahid M, Inhibitors of cyclic nucleotide phosphodiesterase isoenzymes--their potential utility in the therapy of asthma. Pulm. Pharmacol. 7: 1-17, 1994. 7. Nicholson CD, Challiss RA, and Shahid M, Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. Trends Pharmacol. Sci. 12: 19-27, 1991. 8. Manning CD, Burman M, Christensen SB, Cieslinski LB, Essayan DM, Grous M, Torphy TJ, and Barnette MS, Suppression of human inflammatory cell function by subtype-selective PDE4 inhibitors correlates with inhibition of PDE4A and PDE4B. Br. J. Pharmacol. 128: 1393-1398, 1999. 9. Christie P, Roflumilast: a selective phosphodiesterase 4 inhibitor. Drugs Today (Barc.) 41: 667-675, 2005. 10. Giembycz MA, Phosphodiesterase 4 and tolerance to beta 2-adrenoceptor agonists in asthma. Trends Pharmacol. Sci. 17: 331-336, 1996. 11. Manning CD, Burman M, Christensen SB, Cieslinski LB, Essayan DM, Grous M, Torphy TJ, and Barnette MS, Suppression of human inflammatory cell function by subtype-selective PDE4 inhibitors correlates with inhibition of PDE4A and PDE4B. Br. J. Pharmacol. 128: 1393-1398, 1999. 12. Nielson CP, Vestal RE, Sturm RJ, and Heaslip R, Effects of selective phosphodiesterase inhibitors on the polymorphonuclear leukocyte respiratory burst. J. Allergy Clin. Immunol. 86: 801-808, 1990. 13. Schneider HH, Schmiechen R, Brezinski M, and Seidler J, Stereospecific binding of the antidepressant rolipram to brain protein structures. Eur. J. Pharmacol. 127: 105-115, 1986. 14. Hatzelmann A and Schudt C, Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro. J. Pharmacol. Exp.Ther. 297: 267-279, 2001. 15. Zhao Y, Zhang HT, and O'Donnell JM, Inhibitor binding to type 4 phosphodiesterase (PDE4) assessed using [3H]piclamilast and [3H]rolipram. J. Pharmacol. Exp.Ther. 305: 565-572, 2003. 16. Draheim R, Egerland U, and Rundfeldt C, Anti-inflammatory potential of the selective phosphodiesterase 4 inhibitor N - (3,5-dichloro-pyrid-4-yl) -[1-(4-fluorobenzyl)-5-hydroxy-indole-3-yl]-gly oxylic acid amide (AWD 12-281), in human cell preparations. J. Pharmacol. Exp.Ther. 308: 555-563, 2004. 17. Ko WC, Shih CM, Lai YH, Chen JH, and Huang HL, Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure-activity relationships. Biochem. Pharmacol. 68: 2087-2094, 2004. 18. Ko WC, Chen MC, Wang SH, Lai YH, Chen JH, and Lin CN, 3-O-methylquercetin more selectively inhibits phosphodiesterase subtype 3. Planta Med. 69: 310-315, 2003. 19. Thompson WJ and Appleman MM, Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry 10: 311-316, 1971. 20. Ahn HS, Crim W, Romano M, Sybertz E, and Pitts B, Effects of selective inhibitors on cyclic nucleotide phosphodiesterases of rabbit aorta. Biochem. Pharmacol. 38: 3331-3339, 1989. 21. Podzuweit T, Nennstiel P, and Muller A, Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro -9- (2-hydroxy-3-nonyl) adenine. Cell. Signal. 7: 733-738, 1995. 22. Harrison SA, Reifsnyder DH, Gallis B, Cadd GG, and Beavo JA, Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol. Pharmacol. 29: 506-514, 1986. 23. Reeves ML, Leigh BK, and England PJ, The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem. J. 241: 535-541, 1987. 24. Gillespie PG and Beavo JA, Inhibition and stimulation of photoreceptor phosphodiesterases by dipyridamole and M&B 22,948. Mol. Pharmacol. 36: 773-781, 1989. 25. Bradford MM, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254, 1976. 26. Kanehiro A, Ikemura T, Makela MJ, Lahn M, Joetham A, Dakhama A, and Gelfand EW, Inhibition of phosphodiesterase 4 attenuates airway hyperresponsiveness and airway inflammation in a model of secondary allergen challenge. Am. J. Respir. Crit. Care Med. 163: 173-184, 2001. 27. Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG, and Gelfand EW, Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am. J. Respir. Crit. Care Med. 156: 766-775, 1997. 28. Cho YS, Kwon B, Lee TH, Kim TB, Moon KA, La S, Lee J, Lee SD, Oh YM, and Moon HB, 4-1 BB stimulation inhibits allergen-specific immunoglobulin E production and airway hyper-reactivity but partially suppresses bronchial eosinophilic inflammation in a mouse asthma model. Clin. Exp. Allergy 36: 377-385, 2006. 29. Underwood DC, Kotzer CJ, Bochnowicz S, Osborn RR, Luttmann MA, Hay DW, and Torphy TJ, Comparison of phosphodiesterase III, IV and dual III/IV inhibitors on bronchospasm and pulmonary eosinophil influx in guinea pigs. J. Pharmacol. Exp. Ther. 270: 250-259, 1994. 30. kupchan SM and bauerschmidt E, cytotoxic flavonols from baccharis sarothroides. Phytochemistry 10: 664-666, 1971. 31. Babber S, Chandra S, and Aggarwal AK, Synthesis of a Typical Chalkone and a Flavanone of Wyethia glabra. Indian J. Chem. Sect. B 26: 797-798, 1987. 32. Townley RG and Horiba M, Airway hyperresponsiveness: a story of mice and men and cytokines. Clin. Rev. Allergy Immunol. 24: 85-110, 2003. 33. Kammer GM, The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunol.Today 9: 222-229, 1988. 34. Kuehl FA, Jr., Zanetti ME, Soderman DD, Miller DK, and Ham EA, Cyclic AMP-dependent regulation of lipid mediators in white cells. A unifying concept for explaining the efficacy of theophylline in asthma. Am. Rev. Respir. Dis. 136: 210-213, 1987. 35. Moore AR and Willoughby DA, The role of cAMP regulation in controlling inflammation. Clin. Exp. Immunol. 101: 387-389, 1995. 36. Bourne HR, Lichtenstein LM, Melmon KL, Henney CS, Weinstein Y, and Shearer GM, Modulation of inflammation and immunity by cyclic AMP. Science 184: 19-28, 1974. 37. Dent G, Giembycz MA, Evans PM, Rabe KF, and Barnes PJ, Suppression of human eosinophil respiratory burst and cyclic AMP hydrolysis by inhibitors of type IV phosphodiesterase: interaction with the beta adrenoceptor agonist albuterol. J. Pharmacol. Exp. Ther. 271: 1167-1174, 1994. 38. Tenor H, Staniciu L, Schudt C, Hatzelmann A, Wendel A, Djukanovic R, Church MK, and Shute JK, Cyclic nucleotide phosphodiesterases from purified human CD4+ and CD8+ T lymphocytes. Clin. Exp. Allergy 25: 616-624, 1995. 39. Robicsek SA, Blanchard DK, Djeu JY, Krzanowski JJ, Szentivanyi A, and Polson JB, Multiple high-affinity cAMP-phosphodiesterases in human T-lymphocytes. Biochem. Pharmacol. 42: 869-877, 1991. 40. Giembycz MA, Corrigan CJ, Seybold J, Newton R, and Barnes PJ, Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T-lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2. Br. J. Pharmacol. 118: 1945-1958, 1996. 41. Barnette MS, Bartus JO, Burman M, Christensen SB, Cieslinski LB, Esser KM, Prabhakar US, Rush JA, and Torphy TJ, Association of the anti-inflammatory activity of phosphodiesterase 4 (PDE4) inhibitors with either inhibition of PDE4 catalytic activity or competition for [3H]rolipram binding. Biochem. Pharmacol. 51: 949-956, 1996. 42. Boswell-Smith V, Spina D, Oxford AW, Comer MB, Seeds EA, and Page CP, The Pharmacology of Two Novel Long-Acting Phosphodiesterase 3/4 Inhibitors, RPL554[9,10-Dimethoxy-2(2,4,6-trimethylphenylimino)- 3- (N- carbamoyl-2- aminoethyl)-3,4,6,7-tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one] and RPL565 [6,7- Dihydro-2- (2,6-diisopropylphenoxy)- 9,10- dimethoxy- 4H- pyrimido[6,1-a]i soquinolin-4-one]. J. Pharmacol. Exp. Ther. 318: 840-848, 2006. 43. Manabe H, Akuta K, Sejimo H, Kawasaki H, Nukui E, Ichimura M, Kase H, Kawakita T, Suzuki F, Kitamura S, Sato S, and Ohmori K, Anti-inflammatory and bronchodilator properties of KF19514, a phosphodiesterase 4 and 1 inhibitor. Eur. J. Pharmacol. 332: 97-107, 1997. 44. Compton CH, Gubb J, Nieman R, Edelson J, Amit O, Bakst A, Ayres JG, Creemers JP, Schultze-Werninghaus G, Brambilla C, and Barnes NC, Cilomilast, a selective phosphodiesterase-4 inhibitor for treatment of patients with chronic obstructive pulmonary disease: a randomised, dose-ranging study. Lancet 358: 265-270, 2001. 45. Kuss H, Hoefgen N, Johanssen S, Kronbach T, and Rundfeldt C, In vivo efficacy in airway disease models of N-(3,5-dichloropyrid-4-yl)- [1- (4- fluorobenzyl)-5-hydroxy-indole-3-yl]-glyo xylic acid amide (AWD 12-281), a selective phosphodiesterase 4 inhibitor for inhaled administration. J. Pharmacol. Exp. Ther. 307: 373-385, 2003. 46. Lipworth BJ, Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease. Lancet 365: 167-175, 2005.
|