跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1742:3a1e:c308:7608) 您好!臺灣時間:2024/12/08 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭雯萱
研究生(外文):SIOW WEN SHIAN
論文名稱:膨脹型胃滯留傳遞系統的開發與特性探討
論文名稱(外文):Development and Characterization of Expandable Gastroretentive Delivery System (GRDS)
指導教授:許明照許明照引用關係
指導教授(外文):SHEU, MING-THAU
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學系
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:125
中文關鍵詞:膨脹型胃滯留HEC
外文關鍵詞:expandablegastroretentiveHEC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:537
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本實驗的目的是希望能發展出一個新穎的膨脹型胃滯留藥物傳輸系統。我們主要是以具膨脹特性的聚合物為主,再添加不同的輔助性賦型劑來製備出理想的劑型。本研究中,主要將處方的設計分為以下五大分類來進行膨脹特性的探討,包括:不同聚合物的組合、帶電型聚合物的添加、不同離子複合物的組合、滲透壓物質的添加和導水物質的添加。從不同的聚合物或賦型劑的組成,依錠劑之物化性質可以評估不同的錠劑膨脹特性,包括重量的差異或可見的膨脹程度觀察,作為對於錠片膨脹的程度有更完整的了解。

實驗結果顯示單獨比較高分子量的PEO(M.W.8,000,000)和HEC 250HHX發現PEO的膨脹特性較顯著。然而,當等量的NaCMC分別添加到上述兩種聚合物中,卻發現NaCMC的添加使HEC 250HHX能達到較PEO更優越的膨脹效果。此外,從不同離子複合物的添加量中,發現膨脹程度只有微量的加強效果。另外,滲透壓物質或是導水物質的添加對於膨脹特性的影響性並沒有顯著的加強效果。最後,從五大類的處方設計中我們發現HEC 250HHX和NaCMC 450 cps以60:40的混合比例能夠得到最佳的膨脹效果。

接著添加三種不同溶解度的藥物到膨脹型的處方中(HEC 250HHX:NaCMC 450 cps = 60:40)以探討不同濃度的氯化鈉溶液(A:0,B:0.1,C:0.5,D:0.9%)對於藥物釋放模式的影響性。結果顯示,易溶藥物Metformin在各溶液中的釋放速率順序為D>C>A>B,這現象可以Metformin在0.1%的氯化鈉溶液中的溶解度相較於其他濃度的溶液下確實明顯地偏低來解釋。可溶藥物Ciprofloxacin在各溶液中的釋放速率順序為D>C>B>A。這主要是因為Ciprofloxacin在高濃度氯化鈉溶液中的溶解度較偏低,而溶解度較低的藥物有可能會阻礙膠體層的形成因而藥物可以藉由聚合物的溶蝕較快速地從高濃度氯化鈉溶液中釋放出來。而微溶藥物Esomeprazole在各溶液中的釋放速率順序為A>C>D>B。因為Esomeprazole在各溶液中的藥物釋放速率並沒有顯著的差異,因此認為氯化鈉溶液濃度對於Esomeprazole藥物釋放的影響性不大。在從實驗結果我們也得知,Metformin主要是藉由水份滲透速率來控制藥物的釋放,而Ciprofloxacin和Esomeprazole則是利用水份滲透和膨脹速率來控制藥物的釋放。

結果顯示此製備錠片之特性在胃內能有更明顯延長胃滯留時間的效果,且具有控釋藥物之效能。
The aim of the study was to develop a novel expandable gastroretentive drug delivery system. We have been interested in developing the devices based on swellable polymers combining with several functionalities in the unit. In our studies, the investigation of different formulation factors included the following five categories, i.e. different combination of swellable polymers, the addition of chargable polymers, different combination of ionic complexes of polymers, the addition of osmogents and the addition of wicking agents on the swelling behavior was conducted. Physical characterizations of the tablets including swelling index based on weight variation and visual swelling observations were carried out to have comprehensive understanding of the swelling properties for different combination of polymers and excipients with different functionalities.

Results demonstrate that the swelling ability of higher molecular weight PEO (M.W.8,000,000) was greater than HEC 250HHX alone. However, when NaCMC 450 cps were added in the same ratio to both swellable polymer, it was interesting to found that the swelling size of the combination with HEC 250HHX were much larger than the combination with PEO M.W.8,000,000. On the other hand, the addition of polyionic complexes showed only slightly improvement in swelling index. However, the addition of both osmogents and wicking agents did not show significant improvement in swelling index compared to HEC 250HHX alone. Among the five categories, we found that the combination of HEC 250HHX and NaCMC 450 cps in the ratio of 60:40 exhibited the greatest swelling index.

Subsequently, three different solubility drugs were incorporated in the expandable formulations (HEC 250HHX:NaCMC 450 cps = 60:40) to investigate the influences of the drug solubility on the drug release pattern and swelling behaviors in the medium containing various NaCl concentration (A: 0, B: 0.1, C: 0.5, D: 0.9%). Results reveal that the rank order of decreasing release rate for freely water soluble drug Metformin was D>C>A>B, in which the solubility of Metformin in 0.1% NaCl was exactly much lower than the others. The rank order of decreasing release rate was D>C>B>A for water soluble drug Ciprofloxacin. Due to its highly soluble in various NaCl concentration, this might be caused by the extent of the hindrance in the formation of gel layer increased with increasing NaCl concentration leading to the faster release rate. However, the rank order of decreasing release rate was A>C>D>B for slightly soluble drug Esomeprazole, in which the difference of release rate was not significant pronounced that the influence of NaCl concentration on the release profile of Esomeprazole could be neglected. Furthermore, it was elucidated that the release mechanism of Metformin was mainly by diffusion controlled release, while the release mechanism of Ciprofloxacin and Esomeprazole were mainly by anomalous diffusion release.

In conclusion, the developed gastroretentive device composed of HEC and NaCMC possessed significantly excellent swelling potential for longer gastric retention with sustained drug release characteristics.
Chapter 1 Introduction
1.1 Background of the invention
1.2 Technological developments in GRDS
1.3 Expandable GRDS (Swelling systems)
1.4 Patented delivery systems
1.5 In vivo evaluation of expandable GRDS
1.6 Aim of the study
Chapter 2 Materials and methods
2.1 Materials and equipments
2.2 Methods
Chapter 3 Results and discussion
3.1 Investigation of swelling properties
3.2 Drug solubility analysis
3.3 The release studies
3.3 Dynamic mechanical analysis
Chapter 4 Conclusion
Reference
Appendix
[Appendix I] Front-fixed method
[Appendix II] Photographs of the swollen tablets of all the formulationsafter swelling under static conditions in distilled water
1.Berner B, Louie-Helm J. Tablet shapes to enhance gastric retention of swellable controlled-release oral dosage forms. US Patent 6,488,962 (Dec. 3, 2002).
2.Shell JW, Louie-Helm J, Markey M. Extending the duration of drug release within the stomach during the fed mode. US Patent 6,635,280 (Oct. 21,2003).
3.Sheth PR, Tossounian JL. Novel sustained release tablet formulations. US Patent 4,167,558 (Sep. 11,1979).
4.Sheth PR, Tossounian JL. Sustained release pharmaceutical capsules. US Patent 4,126,672 (Nov. 21, 1978).
5.Bogentoft C. Oral controlled-release dosage forms in perspective. Pharm. Int. 3:366-369 (1982).
6.Iannuccelli V, Coppi G, Bernabei MT, Cameroni R. Air compartment multiple-unit system for prolonged gastric residence. Int. J. Pharm. 174: 47-54 (1998).
7.Ichikawa M, Watanabe S, Miyake Y. A new multiple-unit oral floating dosage systems. I: Preparation and in vitro evaluation of floating and sustained-release characteristics. J. Pharm. Sci. 80:1062-1066 (1991).
8.Atyabi F, Sharma HL, Mohammad HAH, Fell JT. A novel floating system using ion exchange resins. Proc. Int. Symp. Control. Release Bioact. Mater. 21:806-807 (1994).
9.Atyabi F, Sharma HL, Mohammad HAH, Fell JT. Controlled drug release from coated floating ion exchange resin beads. J. Control. Release 42:25-28 (1996).
10.Streubel A, Siepmann J, Bodmeier R. Floating microparticles based on low density foam powder. Int. J. Pharm. 241:279-292 (2002).
11.Preda M, Leucuta SE. Oxpernolol-loaded bioadhesive microspheres: preparation and in vitro/in vivo characterization. J Microencapsul. 20(6):777-789 (2003).
12.Sujja-areeyath J, Munday DL, Cox PJ, Khan KA. Relationship between swelling, erosion and drug release in hydrophilic natural gum minimatrix formulations. Eur. J. Pharm. Sci. 6:207-217 (1998).
13.Chen J, Park H, Park K. Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties. J. Biomed. Mater. Res. 44:53-62 (1999).
14.Chen J, Blevins WE, Park H, Park K. Gastric retention properties of superporous hydrogel composites. J Control Release 64(1-3):39-51 (2000).
15.Chen J, Park K. Synthesis and characterization of superporous hydrogel composites J. Control. Release 65: 73-82 (2000).
16.Chen J, Park K. Synthesis of fast-swelling, superporous sucrose hydrogels. Carbohydr. Polym. 41:259–268 (2000).
17.Zuleger S, Lippold BC. Polymer particle erosion controlling drug release. I. Factors influencing drug release and characterization of the release mechanism. Int J Pharm. 217:139-52 (2001).
18.Zuelger S, Fassihi R, Lippold BC. Polymer particle erosion controlling drug release. II. Swelling investigations to clarify the release mechanism. Int. J. Pharm. 247:23-37 (2002).
19.Klausner EA, Lavy E, Stepensky D, Friedman M, Hoffman A. Novel gastroretentive dosage forms: evaluation of gastroretentivity and its effect on riboflavin absorption in dogs. Pharm. Res. 19:1516-1523 (2002).
20.Klausner EA, Lavy E, Barta M, Cserepes E, Friedman M, Hoffman A. Novel gastroretentive dosage forms: evaluation of gastroretentivity and its effect on levodopa absorption in humans. Pharm. Res. 20:1466-1473 (2003).
21.Torre PM, Torrado S. Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium. Biomaterials 24:1459-1468 (2003).
22.Torrado S, Prada P, Torre PM. Chitosan-poly(acrylic) acid polyionic complex: in vivo study to demonstrate prolonged gastric retention. Biomaterials 25(5):917-923 (2004).
23.Torre PM, Torrado G, Torrado S. Poly (acrylic acid) chitosan interpolymer complexes for stomach controlled antibiotic delivery. J Biomed Mater Res B Appl Biomater. 72:191-197 (2005).
24.Laby RH. Device for administration to ruminants. US Patent 3,844,285 (Oct. 14, 1974).
25.Johnson RH, Rowe EL. Medicinal dosage forms of unpolymerized thiolated gelatin with a crosslinking accelerating agent providing slowly released medication from a swollen matrix. US Patent 3,574,820 (Apr. 13, 1971).
26.Sonobe T, Watanabe S, Katsuma M, Takamatsu N, Konno Y, Takagi H. Gastric retention device. EUR. Patent 0,415,671 (Mar. 6, 1991).
27.Mamajek RC, Moyer ES. Drug-dispensing device and method. US Patent 4,207,890 (Jun. 17, 1980).
28.Penners G, Lustig K, Petersen-von J. Expandable pharmaceutical forms. US Patent 5,651,985 (Jul. 29, 1997).
29.Shell JW, Louie-Helm J. Gastric-retentive, oral drug dosage forms for the controlled release of sparingly soluble drugs and insoluble matter. US Patent 5,972,389 (Oct. 26, 1999).
30.Asmussen B, Cremer K, Hoffmann HR, Ludwig K, Roreger M. Expandable gastro-retentive therapeutic system with controlled active substance release in the gastro-intestinal tract. US Patent 6,290,989 (Sep. 18, 2001).
31.Gusler G, Berner B, Chau M, Padua A. Optimal polymer mixtures for gastric retentive tablets. US Patent 6,723,340 (Apr. 20, 2004).
32.Klausner EA, Lavy E, Friedman M, Hoffman A. Expandable gastroretentive dosage forms. J. Control. Release 90(2):143-162 (2003).
33.Sato Y, Kawashima Y, Takeuchi H, Yamamoto H, Fujibayashi Y. Pharmacoscintigraphic evaluation of riboflavin-containing microballoons for a floating controlled drug delivery system in healthy humans. J. Control. Release 98:75-85 (2004).
34.Weitchies W, Kosch O, Monnikes H, Trahms L. Magnetic Marker Monitoring: An application of biomagnetic measurement instrumentation and principles for the determination of the gastrointestinal behavior of magnetically marked solid dosage forms. Adv. Drug Deliv. Rev. 57:1210-1222 (2005).
35.Wu N, Wang LS, Tan DC, Moochhala SM, Yang YY. Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights. J. Control. Release 102:569-81 (2005).
36.Fujita H. Diffusion in polymer-diluent system. Fortschr. Hochpolym.-Forsch 3:1-47 (1996).
37.Vrentas JS, Duda JL. Diffusion in polymer-solvent systems: I. Reexamination of the free-volume theory. J. Polym. Sci., Polym. Phys. Ed. 15:403-416 (1977).
38.Vrentas JS, Duda JL. Diffusion in polymer-solvent systems: II. A predictive theory for the dependence of diffusion coefficients on temperature, concentration, and molecular weight. J. Polym. Sci., Polym. Phys. Ed. 15:417-439 (1977).
39.Siepmann J, Peppas NA. Hydrophilic matrices for controlled drug delivery: an improved mathematical model to predict the resulting drug release kinetics (the “sequential layer” model), Pharm. Res. 17:1290-1298 (2000).
40.Korsmeyer RW, Lustig SR, Peppas NA. Solute and penetrant diffusion in swellable polymers: I. Mathematical modeling. J. Polym. Sci., Polym. Phys. Ed 24:395-408 (1986).
41.Radu FA, Bause M, Knabner P, Lee GW, Friess. Modeling of drug release from collagen matrices. J. Pharm. Sci. 91:964-972 (2002).
42.Frisch HL. Simultaneous nonlinear diffusion of a solvent and organic penetrant in a polymer. J. Polym. Sci., Polym. Phys. Ed 16:1651-1664 (1978).
43.Narasimhan B, Peppas NA. Disentanglement and reptation during dissolution of rubbery polymers. J. Polym. Sci., Polym. Phys. Ed 34:947-961 (1998).
44.Cooney DO. Effect of geometry on the dissolution of pharmaceutical tablets and other solids: surface detachment kinetics controlling. AICHE J. 18:446-449 (1972).
45.Lee PI, Peppas NA. Prediction of polymer dissolution in swellable controlled-release systems. J. Control. Release 6:207-215 (1978).
46.Baumgartner S, Smid-Korber J, Vreces F, Kristl J. Phsical and technological parameters influencing floating properties of matrix tablets based on cellulose ethers. STP Pharma Sciences 8:182-187 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top