跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/14 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐榮隆
研究生(外文):Jung Lung Hsu
論文名稱:以獨立元件分析方式評估巴金森病之腦血流異常
論文名稱(外文):Assessing rCBF Changes in Parkinson’s Disease Using Independent Component Analysis on SPECT Image
指導教授:徐建業 邱泓文
指導教授(外文):Chien-Yeh Hsu Hung-Wen Chiu
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學資訊研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:52
中文關鍵詞:醫學影像獨立元件分析巴金森氏病單光子電腦斷層攝影
外文關鍵詞:Medical ImageIndependent Component AnalysisICAParkinson’s diseaseCognitionSPECT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
論文摘要
論文名稱: 以獨立元件分析方式評估巴金森病之腦血流異常
台北醫學大學醫學資訊研究所
研究生姓名:徐榮隆
畢業時間:九十五學年度 第二學期
指導教授:徐建業 台北醫學大學醫學資訊研究所 副教授
協同指導教授:邱泓文 台北醫學大學醫學資訊研究所 副教授

內文
關鍵詞:醫學影像,獨立元件分析,巴金森氏病,單光子電腦斷層攝影
背景: 過去二十年,生物醫學及工程上最重要的進展之一就是在非侵式記錄技術的突飛猛進。嶄新的技術讓我們能設計、從事各種複雜的實驗,記錄高精密度的腦電波、心電圖、肌電圖、磁振造影及功能性磁振造影。但是,當生醫技術繼續向時空精密度極限挑戰的同時,生醫訊號分析方法的進展卻沒能趕上技術開發的腳步。對腦神經科學而言,一個可信度高的分析方法與一項革命性的生物技術同等重要,我們需更好的分析方法來從龐大複雜的數據 (包括時間)中,擷取有意義的資訊。本研究使用一個目前最受訊號處理領域矚目的『獨立元件分析』 (Independent Component Analysis, ICA)演算法為主,來分析單光子電腦斷層攝影影像訊號。獨立元件分析是一種可以將多管道 (concurrent multiple-channel)生醫訊號分解成完全獨立的訊號(independent component),並進一步探討這些獨立訊號與實驗行為(task behavior and performance)的相關性的分析工具。這個分析方法在過去幾年已經應用到各種基礎腦神經科學的數據分析,包括腦電波(EEG)、肌電圖(EMG),及功能性磁振造影,獨立元件分析的提出原是為了要解決「雞尾酒會問題」(cocktail-party problem),或稱為「分離未知訊號源問題」(blind source separation)。ICA 是一個可以將被一個未知轉換 (matrix)線性混在一起的訊號,一個個分離出來的工具。其大致之原理是利用神經網路演算法去找到另外一個轉換(W matrix),使其所有輸出 (Y) 的焗 (joint entropy)到達它的最大值,此W就可以把原來的訊號還原回來。過去ICA 應用到分析fMRI 訊號如McKeown et al展示了如何用ICA去分析fMRI 的資料。ICA 的最大優點是它不需要事先知道腦部會對各種不同的事件做如何的反應,而能自動的找到不同區域所作的活動,不像其它的分析方法往往依賴一個事先可以預測的活動變化來尋找哪些區域會產生這變化。本研究將運用此分析方式(獨立元件分析)來比較正常人與巴金森氏病人其大腦中的局部腦血流差異。
方法:巴金森氏病是老年常見的神經退化性疾病,其主要的症狀為動作遲緩、僵直、姿態不穩與顫抖。雖然經過數十年的研究,對於巴金森氏病的腦血流變化仍然未有定論,而目前的單光子電腦斷層攝影對於評估局部的腦血流與了解疾病的病理生理學是一項有用的工具。在本研究中我们將運用ICA 分析一組正常人與巴金森氏病人的單光子電腦斷層攝影影像資料,來比較正常人與巴金森氏病人其大腦中的局部腦血流差異的位置,並探討此差異與臨床症狀的關係。我們收集了27位不同程度的巴金森氏病人與24位對照組的單光子電腦斷層攝影影像資料,病患的臨床症狀與疾病嚴重度依英國巴金森氏病評估量表(United Kingdom of Parkinson’s Disease Rating Scale)與荷雅氏分級(Hoehn and Yahr)。以ICA 分析出9個與疾病相關的獨立訊號和42個與疾病不相關的獨立訊號,再經由影像統計分析的方法(Statistic Parametric Mapping, SPM)找出巴金森氏病與正常人有統計顯著差異的區域,同時我們也以病患的臨床症狀指標找出與疾病有顯著關聯的相關腦功能區。
結果:我們的研究顯示運用此方法可以找到比傳統分析方式更多的疾病相關聯腦功能區,且這些有顯著意義的區域與臨床症狀有著顯著相關,並且與疾病的病理生理學相符合。同時我們也發現邊緣系統(limbic system)中的扣帶迴(cingulated gyrus)與腦島(insula)和臨床症狀有顯著相關,這在過去的文獻並未被提出。
討論: 由於傳統的分析方式是以選擇區域性(region of interest)來進行比較,我們的研究顯示應用獨立成份分析方式可提供一個不同且較完全的方式來評估巴金森氏病的腦血流變化區域。然而我們的病人數並不是很多,另外病人服用藥物可能產生的影響是本研究在解釋時須注意的。未來將須更充份評估此方法的優劣並做廣泛的測試以期於臨床上的使用。
Abstract
Title of Thesis: Assessing rCBF Changes in Parkinson’s Disease Using Independent Component Analysis on SPECT Image
Author: Jung Lung Hsu
Thesis advised by : Chien-Yeh Hsu
Taipei Medical University,
Graduate Institute of Medical Informatics
Key words: Medical Image, Independent Component Analysis, ICA, Parkinson’s disease, Cognition, SPECT
Background: The emergence of non-invasive recording during the current decade is one of the most important developments in biomedical sciences. As technologies continue to push the boundaries of spatial-temporal resolutions of bio-signal recordings, analytic tools need to keep pace with these advances. However, analytic tools for exploring and modeling the wealth of data collected during functional imaging experiments do not yet capture or model the rapidly shifting dynamics of brain systems during complex cognitive activity. Methods are needed to analyze this wealth of data and to separate out machine noise and physiological artifacts to examine functionally independent physiological systems. Based on a recently developed signal-processing tool, Independent Component Analysis, we can implement methods for linear separation of activity originating in functionally distinct physiological systems by using the relative temporal independence of these activities across sufficient recording time and experimental conditions. This approach has resulted in very promising results in analyzing electroencephalogram (EEG), electrocardiogram (EKG), electromyography (EMG), or functional magnetic resonance imaging (fMRI) data. Materials and Methods: Despite extensive studies in Parkinson’s disease (PD) in recent decades, the neural mechanisms of this common neurodegenerative disease remain incompletely understood. Functional brain imaging technique such as single photon emission computerized tomography has emerged as a tool to help us understand the disease pathophysiology by assessing regional cerebral blood flow (rCBF) changes. We suggest that tools based on decomposition of biomedical time series data into a mixture of temporally or spatially independent components can further provide us more information in the analysis of biomedical image signals. In present study, we collected 27 PD patients in various stage of disease and 24 health controls. Clinical staging and motor symptoms in PD were measured by UPDRS scores (United Kingdom of Parkinson’s Disease Rating Scale) and Hoehn and Yahr stage. 99mTc-HMPAO SPECT (single photon emission computerized tomography) image was arranged for both patients and controls. We applied Independent Component Analysis (ICA) to assess the difference in rCBF between PD patients and healthy controls to identify brain regions involving in PD. Finally, statistic parametric mapping (SPM) tool was use to identified statistic significant regions between PD and controls. We also applied motor part UPDRS score to correlate with these significant regions and find brain areas responsible for clinical scores.
Results: After ICA decomposition, 9 independent components were classified as “disease related” subset and 42 as “non-disease related” subset. In “disease-related” subset, SPM revealed many brain areas identified by ICA included the basal ganglia, the brainstem, the cerebellum, and the cerebral cortex. Some of the regions have been largely overlooked in neuroimaging studies using region-of-interest approaches, yet they are consistent with previous pathophysiological reports. Besides, rCBF in limbic system included cingulated gyrus and limbic lobe had demonstrated not only had significant difference between PD and controls, but also had significant correlated with disease symptoms. These had not been reported in previously literatures.
Conclusions: Our study had showed that use ICA as image preprocessing step followed by SPM statistic analysis could significant improve image analysis results. However, our patients were on medication and patient number was not large, which should be caution in further interpretation our results. Since ICA has the ability to solve the blind source separation problem of recovering independent source signals after they are linearly mixed by an unknown matrix, we expect that ICA might be valuable to suggest a new alternative and more comprehensive disease and brain circuit models in PD.
目錄

_____________________________________________________________________________________
頁數
標題…………………………………………………………………………………………i
審定書…………………………………………………………………………………….ii
上網授權書………………………………………………………………………………iii
誌謝……………………………………………………………………………………….iv
目錄……………………………………………………………………………………….vi
表目錄……………………………………………………………………………………vii
圖目錄………………………………………………………………………………….viii
中文摘要……………………………………………………………………………..…..ix
英文摘要………………………………………………………………………………….x
Chapter 1 Background
1.1 introduction………………………………………………………………………14
1.2 pilot study………………………………………………………………………...15
Chapter 2 Literature review
2.1 independent component analysis in biomedical signal analysis…………………18
2.2 brain perfusion imaging agents…………………………………………………..21
2.3 HMPAO-SPECT image in Parkinson’ s disease…………………………………22
Chapter 3 Methods and Materials
3.1 subjects…………………………………………………………………………...24
3.2 clinical staging and scores……………………………………………………..…24
3.3 experimental protocol…………………………………………………………….25
3.4 image preprocessing………………………………………………………………25
3.5 independent component analysis for neuroimaging………………………………26
3.6 independent components for SPECT data……………………………...…………26
3.7 statistic analysis……………………………………………………………..……27
3.8 clinical meaning of significant component……………………………………….28
Chapter 4 Results
4.1 demographic data of controls and PDs……………………………………………30
4.2 statistic significant brain region in disease related component subset……………30
4.3 statistic significant brain region correlated with disease symptoms………………33
Chapter 5 Discussion
5.1 ICA-adjusted rCBF increases in PD………………………………………………36
5.2 ICA-adjusted rCBF decreases in PD……………………………………...………37
5.3 ICA-adjusted rCBF correlates with the motor UPDRS scores……………………38
5.4 on medication study……………………………………………………………….39
Chapter 6 Conclusion
Reference………………………………………………………………………………….41
Appendix…………………………………………………………………………………..45
References
1.Parkinson J. (1817). An essay on the shaking palsy. London: printed by Whittingham and Rowland for Sherwood, Neely and Jones.
2.Koller WC, Montgomery EB. Issues in the early diagnosis of Parkinson’s disease. Neurology 1997;49:S10-25.
3.Hornykiewcz O. Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev. 1966;18:925-64.
4.Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12:366-75.
5.Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990;13:266-71.
6.Martin WRW. Parkinson’s disease: Positron emission tomographic studies. Semin Neurol 1989;9:351-6.
7.Lozza C, Marie RM, Baron JC. The metabolic substrates of bradykinesia and tremor in uncomplicated Parkinson’s disease. Neuroimage 2002;17:688-99.
8.Henriksen L, Boas J. Regional cerebral blood flow in hemiparkinsonian patients: emission computerized tompgraphy of inhaled 133Xenon before and after levodopar. Acta Neurol Scand. 1985;71:257-66.
9.Perlmutter JS, Raichle ME. Regional blood flow in hemiparkinsonism. Neurology 1985;35:1127-34.
10.Wolfson LI, Leenders KL, Brown LL, Jones T. Alterations of cerebral blood flow and oxygen metabolism in Parkinson’s disease. Neurology 1985;35:1399-405.
11.Imon Y, Matsuda H, Ogawa M, Kogure D, Sunohara N. SPECT image analysis using statistical parametric mapping in patients with Parkinson’s disease. J Nucl Med. 1999;40:1583-89.
12.Eidelberg D, Moeller, JR, Dhawan V, Septsieris, P, Takikawa S, Ishikawa T, Chaly, T, Robeson W, Margouleff D, Przedborski S. The metabolic topography of Parkinsonism. J Cereb Blood Flow Meta. 1994;14:783-801.
13.Comon P. “Independent component analysis, a new concept?,” Signal Processing 1994;36:287-314.
14.Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7:1129-59.
15.Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, and et al.. “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. of the Natl Acad of Sci. 1992;89:5675-79.
16.Ogawa S, Tank D, Menon R, Ellermann J, Kim S, Merkle H, and U. K, “Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging,” Proceedings of the National Academy of Sciences U.S.A.1992;89:51-5.
17.Friston KJ, “Statistical parametric mapping and other analyses of functional imaging data,” in Brain Mapping, The Methods, A. W. Toga and J. C. Mazziotta, Eds. San Diego: Academic Press, 1996, pp. 363-396.
18.Calhoun VD, Adali T, McGinty VB, Pekar JJ, Watson TD, Pearlson GD. fMRI activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis. Neuroimage 2001;14:1080-8.
19.Ward CD, Gibb WR. Research Diagnostic Criteria for Parkinson’s disease. In Streifler M, Korczyn AD, Melamed E, Youdim MBH (eds). Advances in Neurology 1990;53,245-49.
20.Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967;17:427-42.
21.Fahn S, Elton RL, Members of the UPDRS Development Committee. Unified Parkinson’s disease and movement disorders. In Recent Developments in Parkinson’s disease vol2., Fahn S, Marsden CD, Calne DB, Goldstein M eds., Florham Park, NJ Mcmillan Health Care Information, 1987;pp. 153-64.
22.Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci. 1978;NS-25:638-643.
23.McKeown M, Jung T-P, Makeig S, Brown GG, Kindermann S, Lee and Sejnowski TJ. Spatially Independent Activity Patterns in Functional Magnetic Resonance Imaging Data During the Stroop Color-naming Task, Proc. of the Natl Acad of Sci. 1998;95:803-10.
24.McKeown M, Makeig S, Brown GG, Jung T-P, Kindermann S, Bell AJ and Sejnowski TJ. Analysis of fMRI data by blind separation into independent spatial components, Human Brain Mapping 1998;6:160-88.
25.Biswal BB, Ulmer JL. Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. J Comput Assist Tomogr 1999; 23:265–71.
26.Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping 2001;14(3):140-51.
27.Kikuchi A, Takeda A, Kimpara T, et al. Hypoperfusion in the supplementary motor area, dorsolateral prefrontal cortex and insular cortex in Parkinson's disease. J Neurol Sci. 2001;193:29-36.
28.Dogali M, Fazzini E, Kolodny E, et al. Stereotactic ventral pallidotomy for Parkinson's disease. Neurology 1995;45:753-61.
29.Alvarez L, Macias R, Lopez G, et al. Bilateral subthalamotomy in Parkinson's disease: initial and long-term response. Brain 2005;128:570-83.
30.Antonini A, Vontobel P, Psylla M, et al. Complememtary positron emsission tomographic studies of the striatal dopaminergic system in Parkinson’s disease. Arch Neurol. 1995;52:1183-90.
31.Hilker R, Voges J, Weisenbach S, et al. Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson's disease. J Cereb Blood Flow Metab. 2004;24:7-16.
32.Ghaemi M, Raethjen J, Hilker R, et al. Monosymptomatic resting tremor and Parkinson's disease: A multitracer positron emission tomographic study. Mov Disord. 2002;17:782-8.
33.Goerendt IK, Lawrence AD, Mehta MA, Stern JS, Odin P, Brooks DJ. Distributed neural actions of anti-parkinsonian therapies as revealed by PET. J Neural Transm. 2006;113:75-86.
34.Oishi N, udaka F, Kameyama M, Sawamoto N, Hashikawa K, Fukuyama H. Regional cerebral flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology 2005;65:1708-15.
35.Firbank MJ, Colloby SJ, Burn DJ, McKeith IG, O'Brien JT. Regional cerebral blood flow in Parkinson's disease with and without dementia. Neuroimage 2003;20:1309-19.
36.Antonini A, De Notaris R, Benti R, De Gaspari D, Pezzoli G. Perfusion ECD/SPECT in the characterization of cognitive deficits in Parkinson's disease. Neurol Sci. 2001;22:47-8.
37.Arahata Y, Hirayama M, Ieda T, et al. Parieto-occipital glucose hypometabolism in Parkinson's disease with autonomic failure. J Neurol Sci.1999;163:119-26.
38.Mayberg HS, Starkstein SE, Sadzot B, et al. Selective hypometabolism in the inferior frontal lobe in depressed patients with Parkinson's disease. Ann Neurol. 1990;28:57-64.
39.Berding G, Odin P, Brooks DJ, et al. Resting regional cerebral glucose metabolism in advanced Parkinson's disease studied in the off and on conditions with 18F-FDG-PET. Mov Disord. 2001;16:1014-22.
40.Black KJ, Hershey T, Hartlein JM, Carl JL, Perlmutter JS. Levodopa Challenge Neuroimaging of Levodopa-Related Mood Fluctuations in Parkinson's Disease. Neuropsychopharmacology. 2005;30:590-601.
41.Sestini S, Scotto di Luzio A, Ammannati F, et al. Changes in regional cerebral blood flow caused by deep-brain stimulation of the subthalamic nucleus in Parkinson's disease. J Nucl Med. 2002;43:725-32.
42.Nagano-Saito A, Kato T, Arahata Y, et al. Cognitive- and motor-related regions in Parkinson's disease: FDOPA and FDG PET studies. Neuroimage 2004;22:553-61.
43.Wu JC, Iacono R, Ayman M, Salmon E, Lin SD, Carlson J et al. Correlation of intellectual impairment in Parkinson’s disease with FDG PET scan. Neuroreport 2000;11:2139-44.
44.Markus HS, Costa DC, Lees AJ. HMPAO SPECT in Parkinson’s disease before and after levodopa: correlation with dopaminergic responsiveness. J Neurol Neurosurg Psychiatry 1994;57:180-5.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top