跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/14 23:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊引祥
研究生(外文):Yin-Hsiang Yang
論文名稱:氧化鋅薄膜應用於拉福波液體感測器之分析與研製
論文名稱(外文):Analysis and research of ZnO thin films applies to Love wave liquid sensors
指導教授:王彥傑水瑞鐏水瑞鐏引用關係
指導教授(外文):Yuan-Jay WangWalter Water
學位類別:碩士
校院名稱:東南技術學院
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:96
中文關鍵詞:拉福波表面聲波液體感測器
外文關鍵詞:Love wavesensorSAW
相關次數:
  • 被引用被引用:1
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用射頻磁控濺鍍系統成長氧化鋅薄膜,並摻雜鎂、鈣、鍶及鋇之氧化鋅薄膜,藉由改變摻雜物及添加量來分析氧化鋅薄膜結晶方向、表面微結構、電性分析,並探討結構變化對通訊濾波器與液體感測器之影響,量測特性包含:機械耦合常數(K2)、敏感度(S)、溫
度漂頻係數(TCF)、有效電容值(C)。

實驗最佳濺鍍參數為射頻功率100W、Ar/O2氣體流量比為12/8、工作壓力為1×10-2torr下,氧化鋅薄膜摻雜1-2mol%鎂時,薄膜結晶性佳且表面較平滑;摻雜鍶時,有高的相位速率和機電耦合常數且溫度漂頻係數穩定;摻雜鈣時,表面粗糙度是隨著摻雜鈣增加而增加,導波層適當的粗糙表面可提高拉福波感測器敏感度,但在過於粗糙表面因結晶性不佳和傳導損失而降低感測器敏感度,控制鈣濃度能得到一個適當的氧化鋅導波層以利於應用在拉福波感測器上;鋇摻雜氧化鋅薄膜則不利於拉福元件之應用。
ZnO films with different concentrations of Mg, Ca, Sr and Ba dopants have been grown on the ST-cut quartz substrate by RF magnetron sputtering technique. The influence of different dopants on crystalline structures and surface characteristics of films were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The sensitivity, electromechanical coupling coefficient, dielectric constant, and temperature coefficient of frequency of devices were measured.
The optimum sputtering parameters in our experiments, the R.F. power is 100W, working pressure is 1×10-2 torr and Ar/O2 ratio is 12/8. ZnO films with better crystalline structure and smoother surface when 1 mol% Mg were doped. The stronger electromechanical coupling coefficient and more temperature stability of Love wave filter were obtained as ZnO films with Sr dopants. Surface roughness increases with increasing of Ca dopants ZnO films and the Love sensor sensitivity increases obviously with increasing surface roughness. But the sensitivity would be reduced due to the over rough surface and imperfect crystalline structure when Ca over-doped. The ZnO film with Ba dopant is not suitability for Love wave devices applications.
摘 要
Abstract
誌 謝
目 錄
圖目錄
表目錄
第一章 序論
1.1 前言
1.2 研究目的
第二章 文獻探討
2.1氧化鋅薄膜特性與應用
2.1.1氧化鋅之結構與特性
2.1.2氧化鋅薄膜材料的應用
2.1.3 P型氧化鋅的研究
2.2壓電效應
2.3石英結構與特性
2.4真空濺鍍原理
2.4.1濺鍍
2.4.2 濺鍍原理
2.4.3 電漿的產生
2.4.4 射頻電漿
2.4.5 輝光放電
2.5 簡介不同濺鍍系統
2.6 射頻磁控濺鍍的目的
2.7 薄膜成核沉積理論
2.8 表面聲波元件理論
2.9 Love Wave 理論
2.9.1 剪向波介紹
2.9.2 Love wave存在條件
2.9.3 最佳靈敏度與最佳波傳導層厚度公式推導
第三章 實驗流程
3.1 實驗材料
3.2 實驗步驟
3.2.1 濺鍍靶材之製作
3.2.2 濺鍍基板之清洗
3.3 實驗設備
3.3.1 射頻磁控濺鍍系統
3.3.2 射頻磁控濺鍍系統規格介紹
3.4 實驗變數
3.4.1 純氧化鋅薄膜實驗變數
3.4.2 氧化鋅摻雜其他添加物之薄膜選取反應參數
3.5 實驗分析儀器
3.5.1 X-ray繞射儀
3.5.2 掃描式電子顯微鏡
3.5.3 原子力電子顯微鏡
3.5.4 網路分析儀
第四章 分析與討論
4.1 靶材組成與各添加物摻雜氧化薄膜之探討
4.2 X-ray分析相位
4.2.1 純氧化鋅與氧化鋅添加碳酸鎂之薄膜相位比較
4.2.2 純氧化鋅與氧化鋅添加碳酸鈣之薄膜相位比較
4.2.3 純氧化鋅與氧化鋅添加碳酸鍶之薄膜相位比較
4.2.4 純氧化鋅與氧化鋅添加碳酸鋇之薄膜相位比較
4.3 SEM表面微結構
4.3.1 純氧化鋅與添加不同濃度的碳酸鎂之微結構
4.3.2 純氧化鋅與添加不同濃度的碳酸鈣之微結構
4.3.3 純氧化鋅與添加不同濃度的碳酸鍶之微結構
4.3.4 純氧化鋅與添加不同濃度的碳酸鋇之微結構
4.4 SEM剖面圖
4.4.1 純氧化鋅與添加不同濃度的碳酸鎂之剖面圖
4.4.2 純氧化鋅與添加不同濃度的碳酸鈣之剖面圖
4.4.3 純氧化鋅與添加不同濃度的碳酸鍶之剖面圖
4.4.4 純氧化鋅與添加不同濃度的碳酸鋇之剖面圖
4.5 AFM觀察表面形貌
4.5.1 純氧化鋅與添加不同濃度的碳酸鎂之表面結構與粗糙度
4.5.2 純氧化鋅與添加不同濃度的碳酸鈣之表面結構與粗糙度
4.5.3 純氧化鋅與添加不同濃度的碳酸鍶之表面結構與粗糙度
4.5.4 純氧化鋅與添加不同濃度的碳酸鋇之表面結構與粗糙度
4.6 網路分析儀分析薄膜特性
4.6.1 利用網路分析儀分析薄膜之機械耦合常數
4.6.2 利用網路分析儀分析薄膜之敏感度
4.6.3 利用網路分析儀分析薄膜之溫度漂頻係數
4.6.4 利用網路分析儀分析薄膜之電容值
第五章 結論
[1]Yves Noel, Miquel Llunell, Roberto Orlando, Philippe D'Arco, and Robert Dovesi, “Performance of various Hamiltonians in the study of the piezoelectric properties of crystalline compounds: The case of BeO and ZnO”, Phys. Rev. B 66, 214107
(2002).
[2] A. V. Singh, R. M. Mehra, Nuttawuth Buthrath, Akihiro Wakahara, and Akira Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient”, J. Appl. Phys. 90,
5661 (2001).
[3] G. A. Hirata, J. McKittrick, J. Siqueiros, O. A. Lopez, T. Cheeks, O. Contreras, and J. Y. Yi, “High transmittance–low resistivity ZnO:Ga films by laser ablation”,
J. Vac. Sci. Technol. A 14, 791 (1996).
[4] M.S. Wu, A. Azuma, T. Shiosaki, A. Kawabata, "Low-loss ZnO Optical Waveguides for SAW applications", IEEE Trans. Ultrasonics, 36(1989),
pp442-445
[5] Walter Water and Sheng-Yuan Chu, "Physical and Structure Properties of ZnO Sputtered Films", Materials Letters, 55(2002),pp67-72
[6] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, "Optimization of Zinc Oxide Thin Films by Radio Frequency Sputtering", Vacuum,59 (2000), pp538-545
[7] E.D. Kolb, R.A. Laudies, J. Am. Ceram. Soc. 49 (6) (1966), pp302.
[8] E.L. Paradis and A.J. Shuskus,"RF Sputtered Epitaxial ZnO Films on Sapphire for Integrated Optics”, Thin Solid Films, 38(1976), pp.131-141
[9] Sauerbrey, Z. Phys., 1959, 155, 206.
[10] C. Eberspacher, A.L Fahrenbruch and R.H. Bube, “Properties of ZnO filmdeposited onto InP by spray pyrolysis”, Thin Solid Films,136(1986),pp.1-10
[11] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, J. Appl. Phys. 85, 2595 (1999).
[12] H.U. Habermeier, “Properties of Indium Tin Oxide Thin films Prepeared by Reactive Evaporation”, Thin Solid Films 80(1981),pp157-160
[13] M.N Kamalasanan, S. Chandra, “Sol-gel synthesis of ZnO thin films”, Thin Solid Films 288(1996),pp112-115
[14] N. Kiyoshi, S. Tatsuay, H-B Kang, “ZnO Film Growth on(011 over-BAR2)LiTaO3 by Electron Cyclotron Resonance-Assisted Molecular Beam Epitaxy and Determination of its Polarity”, Jap. Journal of Applied Physics, part2,6(2000)
pp.534-536
[15] T.Minami, H.Sato, K.Ohashi, T.Tomofuji and S.Takata, "Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering", J. Cry. Grow. ,117(1992),pp370-374
[16] Walter Water, Sheng-Yuan Chu, "Characterization of ZnO Thin Film and Its Applications on Communication Devices and Liquid Sensors", Ph.D Thesis,National C. K. University. ROC. 2002
[17] T. Minami, H. Sato, T. Sonoda, H. Nanto and S. Takata,“Influence of substrateand target temperature on properties of transparent and conductive doped ZnOthin films prepared by RF magnetron sputtering”, Thin Solid Films, 171, (1989),pp301-307
[18]V. Craciun, J.Elders, J.G.E. Gardeniers, J. Geretovsky, I.W.Boyd, Thin Solid
Films.259(1995) 1-4
[19]Yoko Suyama, Yoshitsugu. Tomoliyp, Takeshi Manabe and Eishi Tanaka “Shape
and Structure of Zinc Oxide Particles Prepared by Vapor – phase – Oxidation of
Zinc Vapor” 5am Ceram.Soc 71(5)p 391~395(1988)
[20]Tadashi Shiosaki and Akira Kawabata “Piezoelectric Thin Films for SAW
application” p264~265.
[21]O.Yamazaki, T.Mitsayu and K. Wasa, IEEE Trans on Sonics and Ultrasonis,
Su-27. p369(1980).
[22]T. V. Butkhuzi et al., Radical, J. Cryst. Growth, 117(1992)366.
[23]Gang Xiong et al., Appl. Phys. Lett., 80(2002)268.
[24]X. L. Guo, J. H. Choi, H. Tabata and T. Kawai, Jpn. J. Appl. Phys., 40(2001) L177.
[25] 吳朗,電子陶瓷-壓電,台北市,全欣科技圖書,民83,pp7-13
[26] 楊錦章, 基礎濺鍍電漿,電子發展月刊,68 期(72),13-40
[27] K.Wasa, "Handbook of Sputter Deposition Technology",(1992),pp98
[28] F.Shinoki and A.Itoh, "Mechanism of RF reactive supttering", J.Appl. Phys.46[8],(1975),pp3381-3384
[29] S. Berrg, H. O.Blom, T. Larsson and C. Nender, "Modeling of reactive sputtering of compound materials", J. Vac. Sci. Technol., A5[2],1987],pp202-207
[30] Brain Campman,“Plasma”, Glow Discharge Process, (John Wiley & Sons, New York, U. S. A, 1980) , Chap.3.
[31] 陳寶清,真空表面處理工學,傅勝出版社,民國81年,pp48
[32] M. Ohring,“Physical Vapor Deposition”, The Materials Science of Thin Films,Academic Press, U. K. , (1992) , Chap.3.
[33] 賴耿陽,IC製程之濺鍍技術,復漢出版社,1998。
[34] M. Harsdorff , "Thin influence of charged point defects and contaminationof substrate surface on nucleation", Thin Solid Films ,116(1984),pp55-74.
[35] 田民波, 劉德令, "薄膜科學與技術手冊"上冊,機械出版社,14
[36] J.Venables, "Nucleation and Growth of Thin Films", Rep. Phys. ,47(1984), pp399-459
[37] 陳寶清,真空表面處理工學,傅勝出版社,民國81年,pp53
[38] J.A.Thornton, "Influence of Apparatus Geometry and Deposition Conditionon the Structure and Topography of Thick Sputtered Coating", J.Vac.Sci.Technol.11[4](1974),pp666
[39] J.A.Thornton, "Influence of Substrate Temperature and Deposition Rate onStructure of Thick Sputtered Cu Coatings", J. Vac.Sci. Technol.,12[4](1975)
,pp830
[40] 朱慕道, “表面聲波元件原理與應用” 新電子—光電元件特輯 1994 3
月,p183~186
[41] 陳右儒, “表面聲波酒精感測器之研製”, 國立成功大學電機工程研究所碩士論文, (2003) , pp58-61
[42] C. K Campbell, “Surface Acoustic Wave for Nobile and Wireless Communications” 1997, p161~168.
[43] Z. Wang and J. D. N. CheekeC. K. Jen, “Sensitivity analysis for Love mode acoustic
gravimetric sensors”, Appl. Phys. Lett. 64 (22), pp.2940, 1994.
[44] G. W. Fame11 and E. L. Adler, “In Physical Acoustics”, Academic, New York, Vol. IX, pp.35, 1972.
[45] R.L. Baer, C.A. Florg, M. Tom-Moy, D.S. Solomon,”IEEE1992 Ultrasonics Symposium, Proceedings, Tucson,edit by B.R. Mcavoy (IEEE, Piscataway, NJ,
1992), pp.293, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top