跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/06 15:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張惟翔
研究生(外文):Wei-Hsiang, Chang
論文名稱:紅血球生成素對於低氧誘發之肌肉葡萄糖轉運體表現與肝醣儲存之交互影響
論文名稱(外文):Interactive Effect of Erythropoietin (EPO)Administration on Hypoxia-induced Muscle Glucose Transporter Expression and Glycogen Storage
指導教授:郭家驊郭家驊引用關係
指導教授(外文):Chia-Hua Kuo
學位類別:碩士
校院名稱:臺北巿立體育學院
系所名稱:運動科學研究所
學門:民生學門
學類:運動科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:肝醣檸檬酸合成酶急性低氧
外文關鍵詞:EPOGlycogencitrate synthaseacute hypoxia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
已知紅血球生成素(EPO)可被低氧誘發,促進紅血球的生成進而使血液攜氧量增加並提升運動表現,而低氧亦能造成肌肉細胞內肝醣的儲存量上升。本研究的主要目的為探討是否低氧所誘發的肝醣儲存量增加與EPO有著交互影響。將老鼠分為控制組、EPO注射組、低氧組及EPO+低氧組。EPO組以皮下注射一次EPO而EPO加低氧組則在施打完後48小時置入氧濃度12%之低氧箱中進行12小時的低氧介入,整個實驗流程為60小時,之後馬上解剖取其肌肉與血液樣本進行分析,結果顯示低氧與EPO+低氧組之肝醣明顯高於控制組,但單獨EPO組與控制組無差異,顯示低氧所誘發之肝醣量上升或許不是受到EPO的影響。
It has been known that hypoxia can induce erythropoietin (EPO) release and increase oxygen carring capacity in the blood. Hypoxia can immediately increase muscle glycogen content. The purpose of this study is to investigate whether EPO is a factor to influence muscle glucose uptake under hypoxia. Thirty-six Male Sprague-Dawley rats were randomly assigned to one of the following four groups : control (C, N=9), EPO administration (E, N=9), hypoxia (H, N=9), and EPO+hypoxia (EH, N=9). E group were injected with EPO once by subcutaneous and EH group were into the hypoxia chamber 12 hours by 48 hours after EPO injection. Rats will be sacrificed after the experimental procedure was finished. Blood and muscle samples were obtained and blood samples were stored at -20℃ until assayed by ELISA of EPO and Western blot, Northern blot. The results exhibited that glycogen content was significantly different from control in both hypoxia and EPO+hypoxia groups but not in the EPO alone group. In conclusion, hypoxia induced muscle glucose uptakes is not directly regulated by EPO.
簽名頁………………………………………………………………….......ii
授權書…………………………………………………………………......iii
中文摘要…………………………………………………………………..iv
英文摘要.......................................................................................................v
誌謝................................................................................................vii
目錄...............................................................................................viii
附錄.................................................................................................xi
表目錄.........................................................................................................xii
圖目錄........................................................................................................xiii

第壹章、前言 .......1
第貳章、文獻回顧 .........3
第一節、何謂低氧 .........3
第二節、低氧對能量提供的影響 .........4
第三節、紅血球生成素及其生化角色 .........6
第參章、研究方法與研究步驟 .........9
第一節、動物的選取與照顧 .........9
第二節、實驗設計與流程 .........9
第三節、EPO注射方法 .......11
第四節、低氧介入方法 .......11
第五節、血比容測量………………………………….......…………11
第六節、肌肉肝醣含量分析 .......11
第七節、葡萄糖轉運蛋白分析 .......12
第八節、葡萄糖轉運蛋白基因表現分析 .......13
第九節、檸檬酸合成酶活性分析 .......13
第十節、統計分析 .......13
第肆章、結果 .......15
第一節、血比容 .......15
第二節、肌肉肝醣 .......15
第三節、肌肉GLUT4蛋白表現量 .......20
第四節、肌肉GLUT4 mRNA表現量 .......21
第五節、Citrate Synthase活性 .......22
第伍章、結論與討論 .......24
第一節、低氧與外生性EPO介入前後之血比容…………….........24
第二節、低氧與EPO介入對肝醣的影響…………………….........24
第三節、低氧與EPO介入對GLUT4蛋白表現之影響……...........25
第四節、低氧與EPO介入對GLUT4 mRNA表現之影響…..........26
第五節、低氧與EPO介入對CS活性之影響…………………......26
第六節、結論………………………………………………..............27
引用文獻 .......28
Ammarguellat, F., Gogusev, J., & Drueke, T. B. (1996). Direct effect of erythropoietin on rat vascular smooth-muscle cell via a putative erythropoietin receptor. Nephrology Dialysis Transplantation, 11(4), 687-692.
Azevedo, J. L., Carey, J. O., Pories, W. J., Morris, P. G., & Dohm, G. L. (1995). Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle. Diabetes, 44(6), 695-698.
Bell, G. I., Kayano, T., Buse, J. B., Burant, C. F., Takeda, J., Lin, D., et al. (1990). Molecular biology of mammalian glucose transporters. Diabetes Care, 13(3), 198-208.
Bloch, G., Chase, J. R., Meyer, D. B., Avison, M. J., Shulman, G. I., & Shulman, R. G. (1994). In vivo regulation of rat muscle glycogen resynthesis after intense exercise. Endocrinology and Metabolism, 266(1), E85-91.
Boutellier, U., Deriaz, O., di Prampero, P. E., & Cerretelli, P. (1990). Aerobic performance at altitude: effects of acclimatization and hematocrit with reference to training. International Journal of Sports Medicine, 11 Suppl 1, S21-26.
Cartee, G. D., Douen, A. G., Ramlal, T., Klip, A., & Holloszy, J. O. (1991). Stimulation of glucose transport in skeletal muscle by hypoxia. Journal of Applied Physiology, 70(4), 1593-1600.
Chagnac, A., Weinstein, T., Zevin, D., Korzets, A., Hirsh, J., Gafter, U., et al. (1994). Effects of erythropoietin on glucose tolerance in hemodialysis patients. Clinical Nephrology, 42(6), 398-400.
Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162(1), 156-159.
Coderre, L., Kandror, K. V., Vallega, G., & Pilch, P. F. (1995). Indentification and characteriaation of an exercise-sensitive pool of glucose transporters in skeletal muscle. Journal of Biological Chemistry, 270, 27584-27588.
Derave, W., & Hespel, P. (1999). Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle. Journal of Physiology (Lond), 515(1), 255-263.
Etgen, G. J., Jr., Wilson, C. M., Jensen, J., Cushman, S. W., & Ivy, J. L. (1996). Glucose transport and cell surface GLUT-4 protein in skeletal muscle of the obese Zucker rat. American Journal of Physiology Endocrinology and Metabolism, 271(2), E294-301.
Faura, J., Ramos, J., Reynafarje, C., English, E., Finne, P. E. R., & Finch, C. A. (1969). Effect of Altitude on Erythropoiesis. Blood, 33(5), 668-676.
Frenkel, E. P., Suki, W., & Baum, J. (1968). Some observations on the localization of erythropoietin. Annals of the New York Academy of Sciences, 149(1), 292-293.
Fried, W., Barone-Varelas, J., & Barone, T. (1982). The influence of age and sex on erythropoietin titers in the plasma and tissue homogenates of hypoxic rats. Experimental Hematol, 10(5), 472-477.
Goodyear, L. J., Hirshman, M. F., King, P. A., Horton, E. D., Thompson, C. M., & Horton, E. S. (1990). Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. Journal of Applied Physiology, 68(1), 193-198.
Gruber, D. F., Zucali, J. R., & Mirand, E. A. (1977). Identification of erythropoietin producing cells in fetal mouse liver cultures. Experimental Hematol, 5(5), 392-398.
Hayashi, T., Hirshman, M. F., Fujii, N., Habinowski, S. A., Witters, L. A., & Goodyear, L. J. (2000). Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes, 49(4), 527-531.
Hochachka, P. W., Stanley, C., Matheson, G. O., McKenzie, D. C., Allen, P. S., & Parkhouse, W. S. (1991). Metabolic and work efficiencies during exercise in Andean natives. Journal of Applied Physiology, 70(4), 1720-1730.
Howald, H., Pette, D., Simoneau, J. A., Uber, A., Hoppeler, H., & Cerretelli, P. (1990). Effect of chronic hypoxia on muscle enzyme activities. International Journal of Sports Medicine, 11 Suppl 1, S10-14.
Ismail-Beigi, F. (1993). Metabolic regulation of glucose transport. Journal of Membrance Biology, 135(1), 1-10.
Jaquet, K., Krause, K., Tawakol-Khodai, M., Geidel, S., & Kuck, K. H. (2002). Erythropoietin and VEGF exhibit equal angiogenic potential. Microvascular Reserch, 64(2), 326-333.
Kuo, C.-H., Hunt, D. G., Ding, Z., & Ivy, J. L. (1999). Effect of carbohydrate supplementation on postexercise GLUT-4 protein expression in skeletal muscle. Journal of Applied Physiology, 87(6), 2290-2295.
Lee, W. C., Chen, J. J., Ho, H. Y., Hou, C. W., Liang, M. P., Shen, Y. W., et al. (2003). Short-term altitude mountain living improves glycemic control. High Altitude Medicine and Biology, 4(1), 81-91.
Mercado, C. L., Loeb, J. N., & Ismail-Beigi, F. (1989). Enhanced glucose transport in response to inhibition of respiration in Clone 9 cells. American Journal of Physiology Cell Physiology, 257(1), C19-28.
Passonneau, J. V., & Lauderdale, V. R. (1974). A comparison of three methods of glycogen measurement in tissues. Analytical Biochemistry, 60(2), 405-412.
Ruderman, N. B., Saha, A. K., Vavvas, D., & Witters, L. A. (1999). Malonyl-CoA, fuel sensing, and insulin resistance. American Journal of Physiology Endocrinology and Metabolism, 276(1), E1-18.
Saltin, B., Mygaard, E., & Rasmussen, B. (1980). Skeletal muscle adaptation in man following prolonged exposure to high altitude. Acta Physiological Scandinavia, 109, 31-35.
Shepherd, P. R., & Kahn, B. B. (1999). Glucose Transporters and Insulin Action -- Implications for Insulin Resistance and Diabetes Mellitus. New England Journal of Medicine, 341(4), 248-257.
Stefanovic, V., Nesic, V., & Stojimirovic, B. (2003). Treatment of insulin resistance in uremia. International Journal of Artificial Organs, 26(2), 100-104.
Vetterlein, F., Hemeling, H., Sammler, J., Petho, A., & Schmidt, G. (1989). Hypoxia-induced acute changes in capillary and fiber density and capillary red cell distribution in the rat heart. Circulation Research, 64(4), 742-752.
Xia, Y., Warshaw, J. B., & Haddad, G. G. (1997). Effect of chronic hypoxia on glucose transporters in heart and skeletal muscle of immature and adult rats. American journal of physiology. Regulatory, integrative and comparative physiology, 273(5), R1734-1741.
厲彩虹(2001)。EPO及EPO興奮劑。松遼學刊,4,53-55.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文