跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/15 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:管郁中
研究生(外文):Yu-Chung Kuan
論文名稱:以離子交換輔助污泥中重金屬之酸萃取
論文名稱(外文):Acid Extration of Heavy Metals from Sludge Facilitated by Ion Exchange
指導教授:陳嘉明陳嘉明引用關係
指導教授(外文):Jai-Ming Chern
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:128
中文關鍵詞:離子交換重金屬實驗設計萃取動力學污泥
外文關鍵詞:ion-exchangeheavy metalfactorial designextractionkineticssludge
相關次數:
  • 被引用被引用:5
  • 點閱點閱:496
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:0
重金屬污染物不像有機污染物能被生物分解或以適當化學方法轉化成無害之小分子,其只能轉化為較不具毒性之形式,因此,若具有毒性形式之重金屬存在於環境當中,會被生物體不斷地吸收累積,而無法自體內分解或排除,於是重金屬污染之控制成為環境工程之重大課題。
本研究結合酸瀝取與離子交換樹脂,對污泥中之重金屬進行去除與回收,重金屬污泥中所含之重金屬主要為二價的銅、鋅、鎘與鎳和三價的鉻與鐵。實驗結果顯示,在離子交換實驗中,鉻離子與其他五種離子明顯不同,鉻離子與氫離子的平衡反應為放熱反應,其它離子與氫離子則為吸熱反應;以酸瀝取劑去除污泥中之重金屬實驗,鉻金屬離子比其他離子難以自污泥中被去除。另外,三種不同裝置的酸萃取-離子交換循環回流實驗中顯示,以替換管柱方式進行實驗可有效地去除污泥中的重金屬,使用60克樹脂進行實驗300分鐘後,污泥中殘餘重金屬量只剩原始的0.35 %。與不使用離子交換樹脂的實驗結果比較,使用替換管柱方式之循環回流實驗不但可使污泥中重金屬的萃取效果提高19 %,還可使用較少的酸萃取劑即可達到相同的重金屬萃取結果。
Heavy metal contaminants, unlike organic pollutants that can be converted into non-hazardous small molecules by chemical treatments and/or bio-decomposition, they can only be transformed to a less-toxic form. If heavy metal existing as a toxic form in the environment, it might enter human or other animal bodies and accumulate constantly in the organisms. That is why the control of the heavy metal contamination becomes more and more important in environmental engineering field.
This study combines acid treatment with ion exchange process to remove and recover heavy metals from sludge contenting divalent metals of copper, zinc, cadmium, and nickel and trivalent metals of chromium and iron. The experimental results for chromium ion are quite different from other metal ions; the ion exchange process between chromium and hydrogen is found to be exothermic while those between other metal ions and hydrogen are endothermic. Chromium is the most difficultly extractable ion from sludge by acid treatment. Different experimental setups of re-circulation systems for heavy metal removal were also examined. Among them, the refreshed-column re-circulation system achieved the best heavy metal removal efficiency. Only 0.35 % of the heavy metal ions remained in the residue after 300 min using 60 g resin. In comparison with the acid leaching only, using the refreshed-column re-circulation system can not only increase 19 % heavy metal extraction efficiency but also achieve the same extraction efficiency with less amounts of acid extractant.
ACKNOWLEDGMENTS i
ABSTRACT (English) ii
ABSTRACT (Chinese) iii
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES ix
GLOSSARY OF NOTATION xii
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Objectives and Scope 4
CHAPTER 2 LITERATURE REVIEW 5
2.1 Ion-exchange 5
2.2 Adsorption Isotherm of Heavy Metal Exchanging 8
2.2.1 Langmuir Isotherm 8
2.2.2 Freundlich Isotherm 10
2.2.3 Separation Factor 11
2.2.4 Selectivity Coefficient Model 12
2.3 Thermodynamic Functions of Heavy Metal Exchanging 13
2.4 Treatment of Heavy Metal Contaminated Sludge 14
2.5 Full Factorial Design 15
2.5.1 23 Full Factorial Design 15
2.5.2 Analysis of Variance 19
CHAPTER 3 EXPERIMENT 23
3.1 Experimental Apparatus, Chemicals and Equipment 23
3.2 Procedures 23
3.2.1 Samples Preparation and Digestion 23
3.2.2 Resin Pretreatment 26
3.2.3 23 Full Factorial Design 26
3.2.4 High Temperature Heavy Metal Sludge Extraction 28
3.2.5 Combined System Experiment 31
3.2.6 Ion-exchange Equilibriums of Heavy Metal Ions 31
3.2.7 Re-circulation Experiments 33
(a) Single-column Re-circulation System 33
(b) Four-column Re-circulation System 38
(c) Refreshed-column Re-circulation System 38
3.2.8 Extra Test of Re-circulation Experiment 38
3.3 AA Calibration Curves 39
CHAPTER 4 RESULTS AND DISCUSSION 46
4.1 Heavy Mental Content in Sludge 46
4.2 DOE Result of Heavy Metal Removal from Sludge 46
4.3 Effects of L/S Ratio and Extractant Concentration 51
4.4 Effect of Reaction Time 59
4.4.1 Extraction and Ion-exchange Model 63
4.5 Equilibrium Isotherm of Heavy Metal Ions 75
4.5.1 Langmuir and Freundlich Isotherms 75
4.5.2 Separation Factor 81
4.5.3 Selectivity Coefficient Model 83
4.6 Re-circulation Experiment 91
4.6.1 Single-column Re-circulation 91
4.6.2 Four-column Re-circulation 98
4.6.3 Refreshed-column Re-circulation 98
CHAPTER 5 CONCLUSIONS 105
REFERENCES 107
Adams, B. A., Holmes, E. L., 1935. Absorptive properties of synthetic resins. Part 1, J. Soc. Chem. Ind., 54, 1T-6T.
Ajmal, M., Khan, A. H., Ahmad, S., Ahmad, A., 1998. Role of sawdust in the removal of copper(II) from industrial wastes, Wat. Res., 32, 3085-3091.
Aksu, Z., Açıkel, Ü., Kabasakal, E., Tezer, S., 2002. Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge, Wat. Res., 36, 3063-3073.
An, H. K., Park, B. Y., Kim, D. S., 2001. Crab shell for the removal of heavy metals from aqueous solution, Wat. Res., 35, 3551-3556.
Araujo, P. W., Brereton, R. G., 1996. Experimental design I. Screening, Trends in Analytical Chemistry, 15, 26-31.
Berling, T., Runeson, P., 2003. Efficient evaluation of multifactor dependent system performance using fractional factorial design, IEEE Transaction on Software Engineering, 29, 769-781.
Box, G. E. P., Hunter, W. G., Hunter, J. S., 1978. Statistics for experiments: An introduction to design, data analysis, and modeling, John Wiley & Sons, Inc., New York.
Chen, C. L., Lo, S. L., Kuan, W. H., Hsieh, C. H., 2005. Stabilization of Cu in acid-extracted industrial sludge using a microwave process, J. Hazard. Mater., B123, 256-261.
Chianese, A., Ranauro, R., Verdone, N., 1999. Treatment of landfill leachate by reverse osmosis, Wat. Res., 33, 647-652.
D’Alelio, G. F., 1944. Production of synthetic polymeric compositions comprising sulphonated polymerizates of poly-vinyl aryl compounds and treatment of liquid media therewith, US Pat., 2366007.
EPA, Taiwan, 2006. http://waste.epa.gov.tw.
Fernández, Y., Marañón ., E., Castrillón, L., Vázquez, I., 2005. Removal of Cd and Zn from inorganic industrial waste leachate by ion exchange, J. Hazard. Mater., B126, 169–175.
Freundlich, H., 1926. Colloid and Capillary Chemistry. English translation of third German edition, Methuen, London.
Gan, Q., 2000. A case study of microwave processing of metal hydroxide sediment sludge from printed circuit board manufacturing wash water, Waste Management, 20, 695-701.
Gans, R., 1905. Zeolithe und ähnliche Verbindungen, Jahrb. preuβ. geolog. Landesanstalt, 26, 179.
Grahn, M., 2004. Development of a novel zeolite coated ATR-FTIR sensor, Licentiate Thesis, Department of Chemical Engineering and Geosciences, Luleå University of Technology, Sweden.
Gupta, V. K, 1998. Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost, Ind. Eng. Chem. Res., 37, 192-202.
Hall, K. R., Eagleton, L. C., Acrivos, A., Vermeulen, T., 1966. Pore and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions, Ind. Eng. Chem. Fundam., 5, 212-223.
Helfferich, F., 1962. Ion Exchange, McGraw-Hill, Inc., New York.
Jakobsen, M. R., Fritt-Rasmussen, J., Nielsen, S., Ottosen, L. M., 2004. Electrodialytic removal of cadmium from wastewater sludge, J. Hazard. Mater., 106B, 127-132.
Johnke, B., Wiebusch, B., 1997. Current state and development of thermal sewage sludge disposal, Fuel and Energy Abstracts, 38, 350. (In German)
Juang, R. S., Lin, S. H., Wang, T. Y., 2003. Removal of metal ions from the complexed solutions in fixed bed using a strong-acid ion exchange resin, Chemosphere, 53, 1221-1228.
Juang, R. S., Shiau, L. D., 1998. Ion exchange equilibria of metal chelates of ethylenediaminetetraacetic acid (EDTA) with Amberlite IRA-68, Ind. Eng. Chem. Res., 37, 555-560.
Khezami, L., Capart, R., 2005. Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies, J. Hazard. Mater., B123, 223-231.
Konrad, D., 1991. Ion Exchangers, Walter de Gruyter, Berlin.
Kurniawan, T. A., Chan, G. Y.S., Lo, W. H., Babel, S., 2006. Physico–chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118, 83-98.
Langmuir, I., 1918. The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403.
Lee, I. H., 2002. Multi-component heavy metal ion exchange process, MS. Thesis, Department of Chemical Engineering, Tatung University, Taiwan.
Minamisawa, M., Minamisawa, H., Yoshida, S., Takai, N., 2004. Adsorption behavior of heavy metals on biomaterials, J. Agric. Food Chem., 52, 5606-5611.
Moitre, D., Magnago, F., Martinez, J., Galetto, M., 2005. Application of an experimental design methodology for economic parameter analysis in an open market environment, Electric Power Systems Res., 73, 61-66.
Myers, R. H., Montgomery, D. C., 1995. Response surface methodology process and product optimization using designed experiments, John Wiley & Sons, Inc., New York.
Naoum, C., Fatta, D., Haralambous, K. J., Loizidou, M., 2001. Removal of heavy metals from sewage sludge by acid treatment, J. Environ. Sci. Health, A36, 873–881.
Neyens, E., Baeyens, J., Weemaes, M., De heyder, B., 2003. Hot acid hydrolysis as a potential treatment of thickened sewage sludge, J. Hazard. Mater., B98, 275-293.
Pradhan, S., Shukla, S. S., Dorris, K. L., 2005. Removal of nickel from aqueous solutions using crab shells, J. Hazard. Mater., B125, 201-204.
Ruiz, V. S. O., Dias, S. L. P., Gushikem, Y., Bruns, R. E., Airoldi, C., 2004. Full factorial design applied to intercalation of amines in lamellar titanium phenylphosphonate and titanium phenylarsonate, J. Solid State Chem., 177, 675-680.
Sapari, N., Idris, A., Ab. Hamid, N. H., 1996. Total removal of heavy metal from mixed plating rinse wastewater, Desalination, 106, 419-422.
Tay, J. H., 1984. Sludge and incinerator residue as building and construction materials, Proc. Interclean ’84 Conf., Singapore, 252-261.
Tay, J. H., Show, K. Y., 1997. Resource recovery of sludge as a building and construction material - a future trend in sludge management, Wat .Sci. Tech., 36, 259-266.
Tenório, J. A. S., Espinosa, D. C. R., 2001. Treatment of chromium plating process effluents with ion exchange resins, Waste Management, 21, 637-642.
Thompson, H. S., 1850. On the absorbent power of soil, J. Royal Agric. Soc. Engl., 11, 68.
Veeken, A. H. M., Hamelers, H. V. M., 1999. Removal of heavy metals from sewage sludge by extraction with organic acids, Wat .Sci. Tech., 40, 129-136.
Way, J. T., 1850. On the power of soils to absorb manure, J. Royal Agric. Soc. Engl., 11, 313. Id., 1852, ibid 13, 123. Id., 1855, ibid. 15, 491.
Yoshizaki, S., Tomida, T., 2000. Principle and process of heavy metal removal from sewage sludge, Environ. Sci. Technol., 34, 1572-1575.
Zakaria, E. S., Ali, I. M., El-Naggar, I. M., 2002. Thermodynamics and ion exchange equilibria of Gd3+,Eu3+ and Ce3+ ions on H+ form of titanium(IV) antimonate, Colloids and Surfaces A: Physicochem. and Eng. Aspects, 210, 33-40.
Zorpas, A. A., Vlyssides, A. G., Zorpas, G. A., Karlis, P. K., Arapoglou, D., 2001. Impact of thermal treatment on metal in sewage sludge from the Psittalias wastewater treatment plant, Athens, Greece, J. Hazard. Mater., B82, 291-298.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top