(54.236.58.220) 您好!臺灣時間:2021/03/01 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃昱誠
研究生(外文):Yu-Chen Huang
論文名稱:銀錯合物凝膠之製備與性質
論文名稱(外文):STUDIES ON THE PREPARATION AND PROPERTIES OF THE SILVER COMPLEX HYDROGELS
指導教授:李文福李文福引用關係
指導教授(外文):Wen-Fu Lee
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
論文頁數:80
中文關鍵詞:銀錯合物
外文關鍵詞:complexgel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
摘要
一系列具奈米銀粒子之抗菌型高吸水性凝膠,藉由丙烯酸鈉(SA)、1-vinyl-2-pyrrolidinone含銀離子之錯合物(VP-Ag+)與N, N’- methylene-bis-acrylamide (NMBA)所製備,採用的聚合方法為逆向懸浮聚合法。凝膠中的奈米銀粒子由維他命C所還原,採用的方法是用in situ 還原法。討論高吸水性凝膠中之錯合物濃度於對吸水性、膨潤行為與白色念珠球菌抗菌效果之影響。結果顯示,SA-co-VP (SV) 凝膠在去離子水中吸水力約1000 (g H2O/g gel);而在SV-Ag系列之凝膠中,當增加凝膠中的奈米銀粒子時,吸水力則下降。另外在抗菌方面結果顯示,增加凝膠中的銀濃度(1~10 ppm)則抗菌效果越好。
在N-isopropylacrylamide (NIPAAm), 1-vinyl-2-pyrrolidone/ silver ion 錯合物 (VP-Ag+) 與 N, N’-methylene-bis-acrylamide (NMBA) 自由基反應聚合中,於實際的時間下檢測光學穿透度。探討在成膠聚合反應過程中,vinyl pyrrolidinone-silver 錯合物的濃度與聚合的溫度對於光學穿透度與成膠時間的影響。結果顯示在聚合過程中,當提高錯合物濃度或聚合溫度時,成膠時間則會縮短。當提高錯合物濃度或聚合溫度時,膠體活化能則會降低。在膠體中增加銀濃度時,則膨潤度會降低。在本文中,膠體的型態被檢測於SEM。
ABSTRACT
A series of antibacterial superabsorbents containing silver nanoparticles based on sodium acrylate (SA), 1-vinyl-2-pyrrolidinone-silver ion complex (VP-Ag+) and N, N’- methylene-bis-acrylamide (NMBA) were prepared by inverse suspension polymerization. The silver nanoparticles in the gels were reduced to use ascorbic acid (vitamin C) as reductant through in situ reduction method. The influence of the concentration of (VP-Ag+) complex in the superabsorbents on the water absorbency, swelling behavior, and antibacterial effect of Candida albicans was investigated. Results showed that the water absorbency for sodium acrylate and VP copolymeric gel (SV gel) in deionized water was 1,016 g H2O/g gel, but the water absorbency for SV-Ag series gel decreased when the silver nanoparticle was added. Results also showed that the antibacterial effect of the superabsorbents increased with an increase of the silver concentration (1~10 ppm).
Opitcal transmittance was monitored in real time during the free radical crosslinking polymerization of N-isopropylacrylamide (NIPAAm), 1-vinyl-2-pyrrolidone/ silver ion complex (VP-Ag+) and N, N’-methylene-bis-acrylamide (NMBA). The effect of the concentration of vinyl pyrrolidinone-silver complex and polymerization temperature on the optical transmittance and gelation time for the gel polymerization was investigated. Results showed that the gelation time decreased as the complex concentration or polymerization temperature increased during polymerization. The gelation activation energy in the gel polymerization decreased as the complex concentration or polymerization temperature increased. The swelling ratios of the present gels decreased with the increase of the silver ion concentration in the copolymeric gels. SEM morphologies of the copolymeric gels were examined in this article.
TABLE OF CONTENTS
ACKNOWLEDGEMENT….……………….……………………………….v
ENGLISH ABSTRACT…….……………........……………………………vi
CHINESE ABSTRACT…..………..………..……….……………………viii
TABLE OF CONTENTS….……………......…….…………………………ix
LIST OF TABLES………………….......………………..…………………xii
LIST OF FIGURES……………….......…………………….……………..xiii
LIST OF SCHEME ….………………...………………….……….............xvi
CHAPTER 1 INTRODUCTION.………….................................................1
CHAPTER 2 EXPERIMENTAL.…………………………………….........6
2.1 Materials…………………………………………………..…............6
2.1.1 Composition of SV Series Xerogels.................................................6
2.1.2 Preparation of Superabsorbent Polymeric Gels.............................11
2.1.2.1 Preparation of Complex Solution..........................................11
2.1.2.2 Preparation of SA Monomer Solution...................................11
2.1.2.3 Preparation of SV-Ag+ and SV gels.......................................11
2.1.2.4 Chemical Reduction of SV-Ag+ Gels....................................12
2.1.3 Measurement of water absorbency……………………………….12
2.1.3.1 Suction filtration method……………………………….…..12
2.1.3.2 Tea bag method…………………………………….……….13
2.1.4 Kinetics of Swelling………………………………………….......13
2.1.5 Measurement of the Conversion of Silver in the Gels…………...14
2.1.6 Antibacterial Experiment…………………………………………15
2.1.6.1 Qualitative analysis…………………………………….…..15
2.1.6.2 Quantitative analysis.............................................................15
2.2 Materials…………………………………………………………….17
2.2.1 Preparation of Complex Gels……………………………………..17
2.2.2 Polymerization in quartz cells…………………………………….19
2.2.3 Preparation of the Copolymeric Hydrogels……………………….19
2.2.4 Measurement of the swelling kinetics…………………………….20
CHAPTER 3 RESULTS AND DISCUSSION…………………………...21
3.1.1 Characterization of VP-Ag+ Complex……………………………21
3.1.1.1 FT-IR Analysis.......................................................................21
3.1.1.2 UV/Visible Analysis………………………………………..25
3.1.2 Effect of Silver Content on Water Absorbency in
Deionized Water……………………………………………….....28
3.1.3 SEM Analysis…………………………………………………….30
3.1.4 Effect of Silver Nanoparticle Content on Initial Absorption
Rate for the Copolymeric Gels…………………………………32
3.1.5 Effect of Silver Nanoparticle Content on Bacterial
Inactivation for the Superabsorbent Gels………………………..34
3.1.5.1 Qualitative analysis…………………………………….......34
3.1.5.2 Quantification analysis..........................................................36
3.2.1 Characterization of VP-Ag+ Complex…………………………….39
3.2.1.1 FT-IR Analysis………………………………………………39
3.2.1.2 UV/Visible Analysis…...........................................................42
3.2.2 Effect of Silver Concentration and Polymerization Temperature
on Gelation Time…………………………………………………45
3.2.3 Effect of Silver complex on the Gelation Activation Energy……..53
3.2.4 Effect of Silver Ion Content on the Swelling Kinetics……………57
3.2.5 SEM observations…........................................................................59
CHAPTER 4 CONCLUSIONS..................................................................62
CHAPTER 5 REFERENCES…………………………………………….64





LIST OF TABLES
Table 1.1. Characterization of SA / VP-Ag complex copolymeric
gels………………………………………………………………8
Table 1.2. Water Absorbency for SV and SV-Ag gels in deionized
water……………………………………………………………29
Table 2.1. Feed compositions and yields of the NIPAAm / VPAg
copolymeric gels………………………………………………..18














LIST OF FIGURES
Figure 1.1. FT-IR spectra of pure VP monomer and VP-Ag+
complex solutions………………………………………………23
Figure 1.2. FT-IR spectra of SV gel,SV-Ag +gel, and vitamin C
solution added to SV-Ag+ gel…………………………………..24
Figure 1.3. UV absorbance for pure VP monomer and VP-Ag
complex solution during VP and Ag+ formation
process………………………………………………………...26
Figure 1.4. The maximum UV absorbance at λ440nm and λ335nm for
VP-Ag+ and Ag+ during complex formation process………….27
Figure 1.5. Scanning electron micrograph for xerogels. (a)~(d) SV,
(e) SV-Ag1, (f) SV-Ag2.5, (g) SV-Ag5 and (h) SV-Ag10...........31
Figure 1.6. Absorption rate in deionized water for SV and
SV-Ag xerogels by DW method………………………………33
Figure 1.7. Aspergillus niger inactivation by SA gels: (a) Aspergillus
niger, (b), (c) and (d) 0ppm Ag, (e), (f) and (g) lower
silver concentration (100ppm), (h) , (i) and (j) higher
silver concentration (1000ppm)……………………………….35
Figure 1.8. Inactivation of Candida albicans by SV series gels……………37
Figure 1.9. Time courses of Candida albicans inactivation efficiency
by xerogels with various concentrations of silver
nanoparticles…………………………………………………..38
Figure 2.1. FT-IR spectra of pure VP monomer and VP-Ag+ complex
solutions………………………………………………………..41
Figure 2.2. UV absorbance for pure VP monomer and VP-Ag complex solution during VP and Ag+ formation process……………….43
Figure 2.3. The maximum UV absorbance at λ440nm and λ335nm for VP-Ag+ and Ag+ during complex formation process…………………..44
Figure 2.4. Transmittance profiles as a function of gelation time for
different NIPAAm / VP-Ag+ compositions at 20℃…………46
Figure 2.5. Transmittance profiles as a function of gelation time for
different NIPAAm / VP-Ag+ compositions at 30°C…………48
Figure 2.6. Transmittance profiles as a function of gelation time for copolymeric gel with four silver concentration at (a) 40℃,
(b) 55℃, and (c) 70℃………………………………………...50
Figure 2.7. Relation for complex concentration and gelation time in five different reactive temperatures………………………………..52
Figure 2.8. The plots for the sample of (a) NVAg1, (b) NVAg2.5,
(c) NVAg5 and (d) NVAg10. The gelation time, tgel and temperature, T in K……………………………………………55
Figure 2.9. The total silver ion concentration (complex), Ag+ vs.
gelation activation energy, EG. ………………………………..56
Figure 2.10. Swelling kinetic curves of the hydrogels at 25℃.……………58
Figure 2.11. SEM micrographs of gel cross section and silver particle
size of the hydrogels:(a) NVAg1, (b) NVAg2.5, (c) NVAg5,
(d) NVAg10, (e) and (f) silver particle for NVAg5 gel, (g)
silver particle for NVAg10 gel………………………………...60











LIST OF SCHEME
Scheme 1.1. Reaction for VP-Ag+ complex solution……………………….9
Scheme 1.2. Polymerization for poly (SV-Ag+) gel………………………..10
REFERENCES
Part One
(1)U.S. Department of Agriculture. U.S. Pat. 3,981,100 (1961).
(2)Kiatkamjornwonga, S.; Chomsaksakulb, W.; Sonsukc, M. Radiation Physics and Chemistry 2000, 59, 413-427.
(3)Abd El-Rehim H.A. Radiation Physics and Chemistry 2005, 74, 111-117.
(4)Lee, W. F.; Lin, G. H., J Appl Polym Sci 2001, 79, 1665-1674.
(5)Lee, W. F.; Huang, Y. L. J Appl Polym Sci 2001, 81, 1827-1837.
(6)Lee, W. F.; Huang, Y. L. J Polym. Res.2001, 8, 9-15.
(7)Lee, W. F.; Yang, L. G. J Appl Polym Sci 2004, 92, 3422-3429.
(8)Lee, W. F.; Yang, L. G. J Appl Polym Sci 2004, 92, 3666-3674.
(9)Lee, W. F.; Chen, Y. C. J Appl Polym Sci 2004, 94, 2417-2424.
(10)Lee, W. F.; Chen, Y. C. European Polymer Journal 2005, 41, 1605-1612.
(11) Zhang, Z.; Zhao, B.; Hu, L. J Solid State Chem.1996, 121, 105-110.
(12)Wang, H.; Qiao, X.; Chen, J.; Ding, S. Colloids and Surfaces A:Physicochem. Eng. Aspects 2005, 256, 111-115.
(13)Wang, H.; Qiao, X.; Chen, J.; Ding, S.; Wang, X. Materials Chemistry and Physics 2005, 94, 449-453.
(14)Deivaraj, T. C.; Lala, N. L.; Lee, J. Y. J Colloid and Interface Science 2005, 289, 402-409.
(15)Changqi, X.; Zhicheng, Z.; Qiang, Y.; Materials Letters 2004, 58, 1671- 1676.
(16)Zhang, Z.; Zhang, L.; Wang, S.; Chen, W.; Lei, Y. Polymer 2001, 42, 8315-8318.
(17)Sondi, I.; Goia, D.V.; Matijevic, E. J Colloid and Interface Science 2003, 260, 75-81.
(18)Carotenuto, G.; Nicolais, L.; Martorana, B.; Perlo, P. in: Nicolais, L. and Carotenuto, G. (Ed) Metal-Polymer Nanocomposites: Metal-Polymer Nanocomposite Synthesis: Novel Ex Situ and In Situ Approaches. Wiley Interscience, New York 2005, chapter 5 page 155.
(19)Zhu, Y. J.; Qian, Y. T.; Li, X. J.; Zhang, M.W. Nanostruct Mater 1998, 10, 673.
(20) Zhu, Y. J.; Qian Y. T.; Zhang, M.W.; Chen, Z.Y.; Bin, L.; Wang, C.S. Mater Lett 1993, 17, 314
(21)Kim, J. H.; Kim, C. K.; Won, J.; Kang, Y.S.; J Membrane Science 2005, 250, 207-214
(22)Lee, W. F.; Tsao, K. T. J Appl Polym Sci 2006, 100, 3653-3661.
(23) Buchholz, F. L. in Superabsorbent Polymers: Science and Technology; Buchholz, F. L.; Peppas, N. A., Eds.; ACS Symposium Series 573; American Chemical Society: Washington, DC, 1994.
Part Two
(1)Li ,X.; Liu, W.; Ye, G.; Zhang, B.; Zhu, D.; Yao, K.; Liu, Z.; Sheng, X.; Biomaterials 2005, 26, 7002- 7011
(2)Zhang, Z.; Zhao, B.; Hu, L.; J. Solid State Chem .1996, 121, 105-110
(3)Wang, H.; Qiao, X.; Chen, J.; Ding, S.; Colloids and Surfaces A:Physicochem. Eng. Aspects 2005, 256 111-115
(4)Wang, H.; Qiao, X.; Chen, J.; Ding, S.; Wang, X.; Materials Chemistry and Physics 2005, 94, 449-453
(5)Deivaraj, T.C.; Lala, N.L.; Lee, J.Y.; J. Colloid and Interface Science 2005, 289, 402-409
(6)Changqi, X.; Zhicheng, Z.; Qiang, Y.; Materials Letters 2004, 58, 1671-1676
(7)Sondi, I.; Goia, D.V.; Matijevic, E.; J. Colloid and Interface Science 2003, 260, 75-81
(8)Zhang, Z.; Zhang, L.; Wang, S.; Chen, W.; Lei, Y.; Polymer 2001,42 8315-8318
(9)Lee, W.F.; Tsao, K.T.; J Appl Polym Sci 2006, 100, 3653-3661
(10)Carotenuto, G.; Nicolais, L.; Martorana, B.; Perlo, P. in: Nicolais L. And Carotenuto G (Ed) Metal-Polymer Nanocomposites: Metal-Polymer Nanocomposite Synthesis: Novel Ex Situ and In Situ Approaches. Wiley Interscience, New York 2005, chapter 5 page 155.
(11)Pekcan, ��.; Kara, S.; Polymer 2001,42 7411-7417
(12)Fern�鴨dez, B.; Corcuera, M.A.; Marieta, C.; Mondragon, I.; European Polymer Journal 2001, 37 1863-1869
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔