跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 15:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀智偉
研究生(外文):Chih-Wei Chi
論文名稱:尿素濃度對米根黴生產L型乳酸和幾丁聚醣的影響
論文名稱(外文):Effect of Urea Concentration on Production of L-Lactic Acid and Chitosan by Culture of Rhizopus oryzae
指導教授:許垤棊許垤棊引用關係
指導教授(外文):Dey-Chyi Sheu
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:79
中文關鍵詞:幾丁聚醣L型乳酸米根黴尿素
外文關鍵詞:chitosanL-lactic acidRhizopus oryzaeurea
相關次數:
  • 被引用被引用:1
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
在利用米根黴 (Rhizopus oryzae ATCC 9363) 生產L型乳酸的過程中,菌絲乾重和幾丁聚醣受尿素添加量的影響。用5公升攪拌式醱酵槽中進行醱酵,當尿素濃度從每公升2.5公克增加到10.0公克,並以氫氧化鈣控制pH值在6.0,菌絲乾重從每公升4.35公克增加到7.25公克,同時幾丁聚醣從0.290公克增加到0.841公克;在尿素濃度每公升5.0公克時,乳酸有最高產量每公升101.3公克。以氫氧化鈉和碳酸氫鈉混合液控制pH值在6.0,添加尿素濃度每公升5.0公克為氮源,在此條件下,以每公升120公克的葡萄糖為受質,菌絲乾重每公升8.15公克,萃取出幾丁聚醣最高為1.362公克。
During L-lactic acid fermentation by culture of Rhizopus oryzae ATCC 9363, the production of biomass and chitosan was affected by the urea concentration. When fermentation was carried out in a 5-L stirred fermenter by adding calcium hydroxide to control the pH at 6.0, biomass increased from 4.35 g/L to 7.25 g/L as urea from 2.5 to 10.0 g/L was used as N-source; meanwhile, the produced chitosan increased from 0.290 g to 0.841 g. The highest yield of L-lactic acid was 101.3 g/L as 5.0 g/L of urea was used. Upon 5.0 g/L of urea as N-source and 120 g/L of glucose as substrate, 8.15 g of biomass and the highest yield of chitosan at 1.362 g were obtained when pH was controlled at 6.0 by adding a mixture of sodium hydroxide and sodium bicarbonate.
ACKNOWLEDGEMENT………………………………..i
ABSTRACT........................................................................ii
CHINESE ABSTRACT....................................................iii
TABLE OF CONTENTS………..………………………iv
LIST OF TABLES.............................................................ix
LIST OF FIGURES............................................................x
CHAPTER 1 INTRODUCTION......................................1
1.1 Lactic acid………………………….…………………………1
1.1.1 Characterization of lactic acid………………………….…...………1
1.1.2 Commercial production of lactic acid…..………………………..….4
1.1.2.1 Chemical synthesis……………………………………..…..4
1.1.2.2 Fermentation…………………………...…….……..………6
1.1.3 Applications of lactic acid……………………………….………….9
1.1.3.1 Applications of processed food………...….……..……….10
1.1.3.2 The industrial applications…………….……….………….11
1.1.4 Polylactic acid (PLA)…………….…………………….….……....12
1.2 Chitosan……………….………….………….…….………...14
1.2.1 Fungal chitosan………………………………………….….……..14
1.2.2 Structure of chitin and chitosan……………..…………….……….15
1.2.3 Characteristics of chitosan…………………....….…………..…….17
1.2.4 Deacetylation of chitosan……………………………….…………18
1.2.5 Molecular weight……………………………………….………….20
1.3 Rhizopus oryzae…………………….……………….……….21
1.3.1 Rhizopus species………………….…………………….………….21
1.3.2 Rhizopus oryzae…….………………………………….…………..22
1.3.3 The mycelial morphology…………………………….……………25
1.4 Purpose of this study………………………………………..30
CHAPTER 2 MATERIALS AND METHODS.............31
2.1 Microorganisms………………………….…………….……31
2.2 Instruments………………………………………………….31
2.3 Chemicals……………………………….…………………...33
2.4 Cultivation………………………………………….………..34
2.4.1 Culture medium……………….…………………………….……..34
2.4.2 Culture of Rhizopus oryzae ATCC 9363……………….……….....34
2.4.3 Batch fermentation……………………………………..…………..35
2.4.4 Control of fermentation……………………………..……………..37
2.5 Determination of biomass......................................................40
2.6 Analysis of sample compounds by HPLC………….……...40
2.7 Assay of urea………...………………………………...…….41
2.8 Isolation chitosan from the fungal cell wall………….……42
2.9 Analysis of chitosan molecular weight by HPLC……...….43
CHAPTER 3 RESULTS AND DISCUSSION...............44
3.1 Influence of different urea concentration on submerged culture of R. oryzae………………………………………...44
3.1.1 Controlling pH at 6.0 by adding calcium hydroxide during fermentation………………………………………..…........……..45
3.1.1.1 Lactic acid production by R. oryzae using 2.5 g/L of urea as N-source at pH 6.0 in a 5-L fermenter…………….….….46
3.1.1.2 Lactic acid production by R. oryzae using 5.0 g/L of urea as N-source at pH 6.0 in a 5-L fermenter………………..….48
3.1.1.3 Lactic acid production by R. oryzae using 7.5 g/L of urea as N-source at pH 6.0 in a 5-L fermenter……………...……50
3.1.1.4 Lactic acid production by R. oryzae using 10.0 g/L of urea as N-source at pH 6.0 in a 5-L fermenter……..…………….52
3.1.2 Controlling pH at 6.0 by a mixture of sodium hydroxide and sodium hydrogen carbonate…………………………………………..……54
3.1.2.1 Lactic acid production by R. oryzae using 2.5 g/L of urea as N-source at pH 6.0 in a 5-L fermenter………………...…55
3.1.2.2 Lactic acid production by R. oryzae using 5.0 g/L of urea as N-source at pH 6.0 in a 5-L fermenter………………..….57
3.1.2.3 Lactic acid production by R. oryzae using 7.5 g/L of urea as N-source at pH 6.0 in a 5-L fermenter…………….….….59
3.1.2.4 Lactic acid production by R. oryzae using 10.0 g/L of urea as N-source at pH 6.0 in a 5-L fermenter…………….….61
3.2 Effect of urea concentration on the production of lactic
acid and chitosan……………………..…………………….63
3.3 Effect of urea concentration on molecular weight of
chitosan…………………………………...…………..…….65
CHAPTER 4 CONCLUSION.........................................67
REFERENCES.................................................................69
APPENDIXES…………………………………………..76
Appendixes 1: Standard Curve of Chitosan Molecular Weight………….……………………………76
Appendixes 2: Polymer Average Molecular Weight…………..77
Appendixes 2.1 Number-average molecular weight (Mn)………...77
Appendixes 2.2 Weight-average molecular weight (Mw)………...77
Appendixes 3: The HPLC Diagram of Glucose and Lactic acid…………………………………………….78
Appendixes 4: Pictures of R. oryzae……………………………79














LIST OF TABLES
Table 1.1 Physical properties of lactic acid.....................................................3
Table 3.1 Effect of urea concentration on the production of lactic acid and chitosan by adding Ca(OH)2 to control pH during the fermentation……………………………………………………….…......64
Table 3.2 Effect of urea concentration on the production of lactic acid and chitosan by adding a mixture of NaOH and NaHCO3 to control pH during the fermentation.........................................................................................64
Table 3.3 Effect of urea concentration on molecular weight of chitosan by adding Ca(OH)2 to control pH during the fermentation……..………..…66
Table 3.4 Effect of urea concentration on molecular weight of chitosan by adding a mixture of NaOH and NaHCO3 mixture solution to control pH during the fermentation…………………………………………..……....66



LIST OF FIGURES
Figure 1.1 Lactic acid exists in two optically active isomeric forms…….….3
Figure 1.2 Structures of cellulose, chitin and chitosan……………...……...16
Figure 1.3 Model of glucose metabolism in the filamentous fungus Rhizopus oryzae……………………………………………………………...……..24
Figure 2.1 Scheme of procedures in the fermentative experiments…...........36
Figure 2.2 A display of the original ADVENTECH GENIE strategy of fermentation (main board)………………………………...………….….38
Figure 2.3 A display of original ADVENTENCH GENIE strategy for fermentation (connecting system)…………………………………..……39
Figure 3.1 Time course of lactic acid fermentation by R. oryzae using 2.5 g/L of urea as N-source at pH 6.0 in a 5-L fermenter………………………..47
Figure 3.2 Time course of lactic acid fermentation by R. oryzae using 5.0 g/L of urea as N-source at pH 6.0 in a 5-L fermenter…..……..……………..49
Fugure 3.3 Time course of lactic acid fermentation by R. oryzae using 7.5 g/L of urea as N-source at pH 6.0 in a 5-L fermenter……….....……..….51
Figure 3.4 Time course of lactic acid fermentation by R. oryzae using 10.0 g/L of urea as N-source at pH 6.0 in a 5-L fermenter...…….................…53
Figure 3.5 Time course of lactic acid fermentation by R. oryzae using 2.5 g/L of urea as N-source at pH 6.0 in a 5-L fermenter………………………..56
Figure 3.6 Time course of lactic acid fermentation by R. oryzae using 5.0 g/L of urea as N-source at pH 6.0 in a 5-L fermenter………………………..58
Figure 3.7 Time course of lactic acid fermentation by R. oryzae using 7.5 g/L of urea as N-source at pH 6.0 in a 5-L fermenter……………………..…60
Figure 3.8 Time course of lactic acid fermentation by R. oryzae using 10.0 g/L of urea as N-source at pH 6.0 in a 5-L fermenter………………..…..62
Alexopoulus, C. J. and C. W. Mims, 1979. Introductory Mycology John Wiley and Sons Co., New York, 632 pp.
Anders, R. J. J. G. Cervency, and A. L. Milkowski, (Dec. 19, 1989). U.S.
Patent 4,888,191, (to Oscar Mayer Foods Corp., U.S.A.).
Anders, R. J. J. G. Cervency, and A. L. Milkowski, (May. 21, 1991). U.S.
Patent 5,017,391, (to Oscar Mayer Foods Corp., U.S.A.).
ANON. Ecochem (Dupont and Conagra Joint Venture,Wilmington, DE) completes lactic acid plant. Chemical Engineering News, August 1992, p.20-25.
Bai, D., M. Jia, X. Zhao, R. Ban, F. Shen, X. Li and S. Xu, 2003. L(+)-lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor. Chem. eng. sci. 58: 785-791.
Benthin, S. and J. Villadsen, 1995. Production of optically pure D-lactate by Lactobacillus bulgaricus and purification by crystallization and liquid/liquid extraction. Appl. microbiol. biotechnol. 42: 826-829.
Bohlmann, G.M. and Yoshida, Y. Ceh, 2000. Marketing Research Report. Biodegradable Polymers. 1-5.
Bottone, E. J., I. Weitzman and B. A. Hanna, 1979. Rhizopus rhizopodiformis: Emerging etiological agent of Mucormycosis. J. Clin. Microbiol. 9: 530-537.
Datta, R., S. P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank, 1995. Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS microbial. rev. 16: 221-231.
Dominguez, J. M., and Vazquez M., 1999. Effect of the operational conditions on the L-lactic acid production by Rhizopus oryzae. Cienc. Tecnol. Aliment. 2(3): 113-118.
Ellis, J. J., L. J. Rhodes and C. W. Hesseltin, 1976. The genus Amylomyces. Mycologia. 68: 131-143.
Espinel-ingroff, A., L. A. Oakley, and T. M. Kerkering, 1987. Opportunistic Zygomycotic infections. Mycopathologia. 97: 33-41.
Frye, C. B. and D. J. Reinhardt, 1993. Characterization of groups of the Zygomycete genus Rhizopus. Mycopathologia. 124: 139-147.
Harris, J. E. and C. Dennis, 1980. Distribution of Mucor piriformis, Rhizopus sexualis and Rhizopus stolonifer in relation to their spoilage of strawberries. Trans. Brit. Mycol. Soc. 75: 445-450.
Heights, A., 1989. Lactic Acid and Lactates. Product Bulletin, Purac. Inc., IL.
Hesseltine, C.W. and J. J. Ellis, 1961. Notes on mucorales, especially Absidia. Mycologia. 53: 406-426.
Holten, C.H., A. Muller, D. Rehbinder, 1971. Lactic acid, Verlag Chemie, Internation Research Association, Copenhagen, Denmark.
Kandler, O., 1982. Garungsmechansimen bei Milchsaurebakterien. Forum mikrobiol. 5: 16.
Kascak, J. S., J. Kominek, and M. Roshr, 1996. Lactic acid. In: Biotechnology, Vol.6, Rehm, H. J., G. Reed, A. Puhler, and P. Stadler, Eds, pp. 293-306. Weinheim: VCH Press.
Keller, A. K. and Gerhardt, P., 1975. Continuous lactic acid fermentation of whey to produce a ruminant feed supplement high in crude protein. Biotechnol. Bioeng. 17: 997-1018.
Keshavarz, T., R. Eglin, E. Walker, C. Bucke, G. Holt, A.T. Bull, and Liou G. Y., Chann C. C. and W. H. Hsu, 1990. Atlas of the genus Rhizopus and its allies.
Kivimaki-majanen M, editor, 2000. Fortumin biomuovien valmistuslisenssi Saksaan. Kemia-Kemi. 27: 395.
Kosakai, Y., YS. Park, and M. Okabe, 1997. Enhancement of L(+)-lactic acid production using mycelial flocs of Rhizopus oryzae. Biotechnol. Bioeng. 55: 461-470.
Kumar, M.N.V.R., 2000. A review of chitin and chitosan applications. Reactive and Functional Polymers. 46: 1-27.
Lipinsky, E. S. and R. G. Sinclair, 1986. Environmentally benign lactic acid polymers can be produced in large quantities at low process for packaging and consumer goods. Chem. eng. prog. 82(8): 26-32.
McGahren, W. J., G. A. Perkinson, J. A. Growich, R. A. Leese and G. A. Ellestad 1984. Chitosan by fermentation. Process Biochemistry. 19: 88-90.

Miura, S., T. Arimura, M. Hoshino, M. Kojima, L. Dwiarti, and M. Okabe, 2003. Optimization and scale-up of L-lactic acid fermentation by mutant strain Rhizopus sp. MK-96-1196 in airlift bioreactors. J. biosci. bioeng. 96(1): 65-69.
New, N., S. Chandrkrachang, W. F. Stevens, T. Maw, T. K. Tan, E. Khor and S. M. Wong, 2002. Production of fungal chitosan by soild state and submerged fermentation. Carbohydrate Polymers. 49: 235-237.
New, N. and W. F. Stevens, 2004. Effect of urea on fungal chitosan production in solid substrate fermentation. Process Biochemistry. 39: 1639-1642.
Norton, S., C. Lacroix and Vuillemard, J. C., 1994. Kinetic study of continuous whey permeate fermentation by immobilized Lactobacillus helveticus for lactic acid production. Enzyme Microb. Technol. 16: 457-466.
Ohara, H., 1994. Poly-L-lactic acid as biodegradable plastic. Biosci. ind. 52: 642-644.
Ohrlander, M., Palmgren, R., Wirsen, A. and Albertsson, A., 1999. The grafting of acrylamide onto poly (E-caprolactone) and poly (1,5-dioxypn-2-one) using electron-beam pre-irradiation. III. The grafting and in vitro degradation of chemically cross linked poly (1,5-dioxypn-2-one). Journal of Polymer Science Part A: Polymer Chemistry. 37: 1659-1663.
Parajó, J. C., Alonso, J. L. and Santos, V., 1996. Lactic acid from wood. Process Biochem. 31: 271-279.

Park, E. Y., Y. Kosakai, and M. Okabe, 1998. Efficient Production of L (+)-lactic acid using mycelial cotton-like flocs of Rhizopus oryzae in an air-lift bioreactor. Biotechnol. prog. 14: 699-704.
Peter, C. F., and P. A. Sullivan, 1998. The Rhizopus oryzae secreted aspartic proteinase gene family: an analysis of gene expression. Microbiol. 144: 2355-2366.
Pochanavanich, P. and W. Suntornsuk 2002. Fungal chitosan production and its characterization. Letters in Applied Microbiology. 35: 17-21.
Roble, N. D., J. C. Ogbonna and H. Tanaka, 2003. L-lactic acid production from raw cassava starch in a circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrical). Biotechnol. Lett. 25: 1093-1098.
Skory, C. D., S. N. Freer, and R. J. Bothast, 1998. Production of L-lactic acid by Rhizopus oryzae under oxygen limiting conditions. Biotechnol. lett. 20(2): 191-194.
Soccol, C. R., VI. Stonoga, and M. Raimbault, 1994b. Production of L (+)- lactic acid by Rhizopus species. World. j. microbio. biotechnol. 10: 433-435.
Tan, S. C., T. K. Tan, S. M. Wong and E. Khor 1996. The chitosan yield of zygomycetes at their optimum harvesting time. Carbohydrate Polymers. 30: 239-242.
Tay, A. and S. P. Yang, 2002. Production of L (+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol. bioeng. 80: 1-12.

Tsai, S.P. and S.H. Moon, 1998. An Integrated Bioconversion Process for Production of L− lactic acid from Starchy Potato Feedstocks. Appl. biochem. biotechnol. 70: 417-428.
Van Ness, J.H., 1981. Hydroxy Carboxylic Acids. In Kirk Othmer Encyclopedia of Chemical Technology, 3rd Ed. J. Wiley and Sons, New York. 13: 80-103.
Vickory, TB., 1985. Lactic acid. In: Blanch HW, Drew S, Wang DIC, eds. The Practice of Biotechnology: Commodity Products, Vol.3. Elmsford, pp. 761-776.
Webster, J., 1980. Introduction to Fungi. 2nd edn, p.213. Cambridge: Cambridge University Press.
White, S.A.Farina, P.R.Fulton, I., 1979. Prodiction and isolation of chitosan from Mucor rouxii. Appl. Environ. Microbiol. 38: 323-328.
Wright, B. E., A. Longacre, and J. Reimers, 1996. Models of metabolism in Rhizopus oryzae. J. theor. biol. 182: 453-457.
Yang, C. W., Lu, Z. J., and Tsao, G. T., 1995. Lactic acid production by pellet-form Rhizopus oryzae in a submerged system. Biotechnol. Bioeng 51/52: 57-71.


Yin, P., K. Yahiro, T. Ishigaki, Y. Park, and M. Okabe, 1998. L (+)- lactic acid production by repeated batch culture of Rhizopus oryzae in an air-lift bioreactor. J. ferment. bioeng 85: 96-100.
Yoneya, T. and Y. Sato, 1980a. Effect of growth condition on the formation of Rhizopus oryzae javanicus, Funfi alcohol dehydrgenase. Agric. biol. chem. 44: 1949-1959.
Yoneya, T. and Y. Sato, 1980b. Comparison of two alcohol dehydrogenases in the fungus Rhizopus javanicus. Appl. environ. microbiol. 40: 967-969.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top