(3.239.192.241) 您好!臺灣時間:2021/03/02 12:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭賢伸
研究生(外文):Hsien-shen Kuo
論文名稱:利用細本山葡萄(VitisthunbergiiSieb.etZucc.)細胞培養生產白黎蘆醇(resveratrol)之研究
論文名稱(外文):Production of resveratrol by cell culture of Vitis thunbergii Sieb. et Zucc.
指導教授:何錦玟
指導教授(外文):Chin-wen Ho
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:74
中文關鍵詞:細本山葡萄白黎蘆醇植物組織培養
外文關鍵詞:Vitis thunbergiiresveratrolplant tissue culture
相關次數:
  • 被引用被引用:3
  • 點閱點閱:409
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:2
  經三年長期繼代之細本山葡萄(Vitis thunbergii Sieb. et Zucc.)癒合組織(long-term callus),在不添加elicitor下進行懸浮培養18天後,細胞中resverarol含量有21.78 mg/kg DW,細胞鮮重增加約3.5倍。以生物性及非生物性因子刺激long -term callus累積resveratrol,在培養基中添加100 g/L Botrytis cinerea 滅過菌的菌絲,其細胞內有最高resveratrol含量(267.29±70.59 mg/kg DW,控制組為21.79±8.69 mg/kg DW),但細胞大量死亡;而在培養基中添加 6 mg/L methyl jasmonate可以讓細胞中resveratrol含量提升到198.59±66.95 mg/kg DW,並可細胞鮮重增加4倍(3g→12.57g)。照射強度30W的UV光30分鐘可以提升細胞中resverarol含量達110.18±34.72 mg/kg DW,對細胞生長沒有抑制。而提高培養基中蔗糖濃度到150 g/L也可以提升細胞中resveratrol含量(216.08±65.18 mg/kg DW),但卻不利細胞生長。

  利用in vitro植株之不同培植體,培養於不同生長調節劑組合的MS培養基中誘導新癒合組織,結果以1.5 mg/L NAA 搭配 0.5 mg/L BA誘導效果最佳,在莖段及葉柄都可以明顯的誘導出癒合組織(new callus),新誘導癒合組織經三次繼代後測其resveratrol含量可達3616.36 mg/kg DW(葉柄)及 3208.37 mg/kg DW(莖段)。

  長期繼代之細胞生長快速但resveratrol含量會明顯降低,利用elicitor處理雖可有效促進細胞內resveratrol增加2-10倍,但含量仍不及新誘導癒合組織的十分之一。顯示長期繼代細胞系其resveratrol生產能力會快速降低。
The callus of Vitis thunbergii Sieb. et Zucc. was subcultured bimonthly for three years (long-term cell) and was used to establish suspension culture and examine the content of resveratrol in cells. Biomass of long-term cell increased nearly 3.5 times every 18 days cultured in 1/2 MS medium supplemented with 1.86 mg/L NAA and 0.22 mg/L BA. Biotic factors (fungi hypha and yeast elicitor) and abiotic factors (jasmonic acid , methyl jasmonate , salicylic acid, phenylalanine, cinnamic acid, UV ) were used to treat the cells to enhance accumulation of resveratrol. The resveratrol content of cells reached to 267.29±70.59 mg/kg DW (the control was 21.79±8.69 mg/kg DW) when cell cultured in modified MS medium contained autoclaved hypha of Botyis cinerea, but the cells dead quickly.

Methyl jasmonate at 6 mg/L in medium, resveratrol content boosted to 198.59±66.95 mg/kg DW and the fresh weight of biomass to 12.57 g (original inoculum was 3 g) for 18 days culture. Cells treated with UV (power:30W, time:30 minutes) proliferated normally and the resveratrol content in cells was 110.18±34.72 mg/ kg DW. Addition of high dose of sucrose (150 g/L) cause resveratrol accumulation (216.08±65.18 mg/kg DW) but cells eventually died.
The fast growing callus induced from stem and petiole were cultured on modified MS medium with 1.5 mg/L NAA+ 0.5 mg/L BA (new callus).

After three subcultures, the content of resveratrol in new callus was 3616.36 mg/kg DW. The growth rate of long-term cell line was 3.5 folds after 18 days culture, but the content of resveratrol was low (21.79 mg/kg DW). By adding elicitor to medium, the content of resveratrol in long-term cells only up to 267.29 mg/kg DW. It was expressed that the productivity of resveratrol in long-term cell line was fast decrease.
致 謝 i
中文摘要 ii
Abstract iv
目 錄 vi
List of Tables x
List of Figures xii
縮寫字 xiv
一、前人研究 1
1.1 細本山葡萄植株特性及組織培養的相關研究 1
1.2 Resveratrol簡介 2
1.3 Resveratrol的功效 4
1.3.1 抗氧化 4
1.3.2 抗癌性 5
1.3.3 抗發炎及抗血小板凝集作用 6
1.3.4 抑菌性 7
1.4 利用逆境或改變培養因子提升細胞中resveratrol產量之研究 7
1.4.1 in vitro system 8
1.4.1.1 Yeast extract 8
1.4.1.2 前驅物(precursor):phenylalanine(PHE)、cinnamic acid(CA) 8
1.4.1.3 JA(jasmonic acid,茉莉酸)及其衍生物MeJA(methyl jasmonate,茉莉酸甲酯) 8
1.4.1.4 UV光照射 11
1.4.1.5 蔗糖濃度 11
1.4.2 in vivo system 11
1.4.2.1 真菌感染 11
1.4.2.2 salicylic acid(SA,水楊酸)及其衍生物BTH(benzothiadiazole) 12
1.4.2.3 JA(jasmonic acid,茉莉酸)及其衍生物MeJA(methyl jasmonate,茉莉酸甲酯) 12
1.4.2.4 UV光照射 12
二、材料與方法 14
2.1 植物材料 14
2.2 培養基組成 15
2.3 培養環境 17
2.4 長期繼代細胞懸浮培養及生長曲線 17
2.5 培養因子對長期繼代細胞生產resveratrol的影響 17
2.5.1 生物因子(biotic factor) 18
2.5.1.1 灰霉菌及培養菌液 18
2.5.1.2 Yeast elicitor 18
2.5.2 非生物因子(abiotic factor) 18
2.5.2.1 JA及MeJA 18
2.5.2.2 Salicylic acid 23
2.5.2.3 前驅物 23
2.5.3.4 UV光照射 23
2.5.3.5 蔗糖濃度 23
2.6 利用不同培植體進行癒合組織誘導 25
2.7 新誘導癒合組織之增殖及分析其resveratrol含量 25
2.8 田間植株其resveratrol含量分析 25
2.9 Resveratrol萃取 25
2.10 Resveratrol分析 29
2.11 Resveratrol 標準品 29
2.12 統計分析 29
三、結果 30
3.1 長期繼代細胞之生長曲線 30
3.2 培養因子對長期繼代細胞生產resveratrol的影響 30
3.2.1 生物因子 30
3.2.1.1 灰霉菌菌絲及培養菌液 30
3.2.1.2 Yeast elicitor 33
3.2.2 非生物因子 34
3.2.2.1 JA及MeJA 34
3.2.2.2 水楊酸 34
3.2.2.3 前驅物 36
3.2.2.4 UV光照射 38
3.2.2.5 蔗糖濃度 38
3.3 不同培植體產生癒合組織之差異 41
3.4 新誘導癒合組織之增殖及其resveratrol含量 41
四、討論 47
4.1 長期繼代細胞之生長曲線 47
4.2 生物因子對長期繼代細胞生產resveratrol的影響 47
4.3 非生物因子對長期繼代細胞生產resveratrol的影響 48
4.4 新誘導癒合組織中resveratrol含量 50
4.5 田間材料與in vitro 組織之resveratrol含量之比較 51
五、結論 54
六、參考文獻 56
甘偉松. 1980. 台灣藥用植物誌. 國立中國醫藥研究所. p497-498. 台北.
周業斌. 2003. Thidiazuron誘導細本山葡萄(Vitis thnubergii Sieb. & Zucc.)不定芽及其發根之研究. 國立中興大學農業所碩士論文. p.17-20. 台中.
唐传核. 2005. 植物生物活性物質. 化學工業出版社. p.1,256. 北京.
陳泓云. 2001. 小本山葡萄萃取之resveratrol 聚合物在兔子血小板的作用機轉. 國立陽明大學生命科學院與理學研究所碩士論文. p32-38. 台北
潘子明. 2003. 台灣地區機能性食品之管理與行銷狀況. 台大生物醫學報導 21(5):27-34.
Burns, J., T. Yokota, H. Ashihara, M. E. J. Lean and A. Crozier (2002). Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 50(11): 3337-3340.
Cantos, E., J. C. Espin and F. A. Tomas-Barberan (2001). Postharvest induction modeling method using UV irradiation pulses for obtaining resveratrol-enriched table grapes: A new "Functional" fruit? J. Agric. Food Chem. 49(10): 5052-5058.
Chan, M. M. Y. (2002). Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochem. Pharmacol. 63(2): 99-104.
Collin, H. A. and S. Edwards (1998). Plant Cell Culture. Oxford, UK, BIOS sciemtific 115-116.
Cormier, F., H. A. Crevier and C. B. Do (1990). Effects of sucrose concentration on the accumulation of anthocyanins in grape (Vitis vinifera) cell suspension. Can. J. Bot. 68: 1822-1825.
Creasy, L. L. and M. Coffee (1988). Phytoalexin production potential of grape berries. J. Amer. Soc. Hort. Sci. 113(2): 230-234.
Curtin, C., W. Zhang and C. Franco (2003). Manipulating anthocyanin composition in Vitis vinifera suspension cultures by elicitation with jasmonic acid and light irradiation. Biotechnol. Lett. 25(14): 1131-1135.
Do, C. B. and F. Cormier (1991). Accumulation of peonidin 3-glucoside enhanced by osmotic stress in grape (Vitis vinifera L.) cell suspension. Plant Cell, Tissue and Organ Cult. 24(1): 49-54.
Docherty, J. J., M. M. Fu and M. Tasi (2001). Resveratrol selectively inhibits Neisseria gonorrhoeae and Neisseria meningitides. J. Antimicrob. Chemocher. 47: 239-246.
Dourtoglou, V. G., D. P. Makris, F. Bois-Dounas and C. Zonas (1999). Trans -resveratrol concentration in wines produced in Greece. J. Food Compos. Anal. 12(3): 227-233.
Duncan, D. B. (1955). Multiple range and multiple F-test. Biometrics. 11: 1-42.
Fauconneau, B., P. Waffo-Teguo, F. Huguet, L. Barrier, A. Decendit and J. M. Merillon (1997). Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sci. 61: 2103-2110.
Frankel, E. N., A. L. Waterhouse and P. L. Teissedre (1995). Principal phenmlic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem. 43: 890-894.
Fremont, L. (2000). Biological effects of resveratrol. Life Sci. 66(8): 663-673.
Fremont, L., L. Belguenoduz and S. Delpal (1999). Antioxidant activity of resveratrol and alcohol - free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sci. 64(26): 2511-2521.
Hirabayashi, T., I. Kozaki and T. Akihama (1976). In vitro differentiation of shoots from anther callus in Vitis. HortScience 11(5): 511-512.
Hirasuna, T. J., M. L. Shuler and V. K. Lackney (1991). Enhanced anthocyanin production on grape cell cultures. Plant Sci. 78: 107-120.
Ibern-Gomez, M., S. Roig-Perez, R. M. Lamuela-Raventos and M. C. de la Torre-Boronat (2000). Resveratrol and piceid levels in natural and blended peanut butters. J. Agric. Food Chem. 48(12): 6352-6354.
Iriti, M., M. Rossoni, M. Borgo and F. Faoro (2004). Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine, meanwhile improving resistance to Botrytis cinerea. J Agric. Food Chem. 52(14): 4406-13.
Jang, M., L. Cai, G. O. Udeani, K. V. Slowing, C. F. Thomas, C. W. W. Beecher, H. H. S. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon and J. M. Pezzuto (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297): 218-220.
Jeandet, P., R. Bessis and B. Gautheron (1991). The production of resveratrol (3,5,4'-trihydroxystilbene) by grape berries in different developmental stages. Am. J. Enol. Vitic. 42(1): 41-46.
Jeandet, P., R. Bessis, M. Sbaghi and P. Meunier (1995). Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. Phytopath. Z. 143(3): 135-139.
Kakegawa, K., J. Suda, M. Sugiyama and A. Komamine (1995). Regulation of anthocyanin biosynthesis in cell suspension cultures of Vitis on relation to cell division. Physiol. plant. 94: 661-666.
Krisa, S., F. Larronde, H. Budzinski, A. Decendit, G. Deffieux and J. M. Merillon (1999a). Stilbene production by Vitis vinifera cell suspension cultures: methyl jasmonate induction and 13C biolabeling. J. Nat. Prod. 62(12): 1688-1690.
Krisa, S., P. Waffo Teguo, A. Decendit, G. Deffieux, J. Vercauteren and J. M. Merillon (1999b). Production of 13C-labelled anthocyanins by Vitis vinifera cell suspension cultures. Phytochem. 51(5): 651-656.
Ku, K. L., P. S. Chang, Y. C. Cheng and C. Y. Lien (2005). Production of stilbenoids from the callus of Arachis hypogaea: a novel source of the anticancer compound piceatannol. J. Agric. Food Chem. 53(10): 3877-3881.
Langcake, P. and R. J. Pryce (1976). The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol. 9: 77-86.
Larronde, F., J. P. Gaudillere, S. Krisa, A. Decendit, G. Deffieux and J. M. Merillon (2004). Airborne methyl jasmonate induces stilbene accumulation in leaves and berries of grapevine plants Am. J. Enol. Vitic. 54(1): 63-66.
Larronde, F., S. Krisa, A. Decendit, C. Cheze, G. Deffieux and J. M. Merillon (1998). Regulation of polyphenol production in Vitis vinifera cell suspension cultures by sugars. Plant Cell Rep. 17(12): 946-950.
Mii, M., Y. M. Zou, T. Sugiyama, S. Yanagihara and M. Iizuka (1991). High-frequency callus formation from protoplasts of Vitis labruscana Bailey and Vitis thunbergii Sieb. et Zucc. by embedding in gellan gum. Sci. Hortic. 46(3-4): 253-260.
Murashige, T. and F. Skoog (1962). Arevised medium for rapid growth and bioassays with Tabacco tissue culture. Physiol. Plant. 15: 437-497.
Rimando, A. M., M. Cuendet, C. Desmarchelier, R. G. Mehta, M. J. Pezzuto and S. O. Duke (2002). Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J. Agric. Food Chem. 50(12): 3453-3457.
Romero-Perez, A. I., M. Ibern-Gomez, R. M. Lamuela-Raventos and M. C. de la Torre-Boronat (1999). Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem. 47(4): 1533-1536.
Romero-Perez, A. I., R. M. Lamuela-Raventos, A. L. Waterhouse and M. C. de la Torre-Boronat (1996). Levels of cis- and trans-resveratrol and their glucosides in white and rose Vitis vinifera wines from Spain. J. Agric. Food Chem. 44(8): 2124-2128.
Sanders, T. H., R. W. McMichael and K. W. Hendrix (2000). Occurrence of resveratrol in edible peanuts. J. Agric. Food Chem. 48(4): 1243-1246.
Sarig, P., Y. Zutkhi, A. Monjauze, N. Lisker and R. Ben-Arie (1997). Phytoalexin elicitation in grape berries and their susceptibility to Rhizopus stolonifer. Physiol. Mol. Plant Pathol. 50(5): 337-347.
Sato, M., Y. Suzuki, T. Okuda and K. Yokotsuka (1997). Contents of resveratrol, piceid, and their isomers in commercially available wine made from grapes cultivated in Japan. Biosci. Biotech. Biochem. 61(11): 1800-1805.
Siemann, E. H. and L. L. Creasy (1992). Concentration of the phytoalexin resveratrol in wine. Am. J. Enol. Vitic. 43(1): 49-52.
Sobolev, V. S. and R. J. Cole (1999). Trans-resveratrol content in commercial peanuts and peanut products. J. Agric. Food Chem. 47(4): 1435-1439.
Subbaramaiah, K., W. J. Chung, P. Michaluart, N. Telang, T. Tanabe, H. Inoue, M. Jang, J. M. Pezzuto and A. J. Dannenberg (1998). Resveratrol Inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J. Biol. Chem. 273(34): 21875-21882.
Tassoni, A., S. Fornale, M. Franceschetti, F. Musiani, A. J. Michael, B. Perry and N. Bagni (2005). Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol. 166(3): 895-905.
Versari, A., G. P. Parpinello, G. B. Tornielli, R. Ferrarini and C. Giulivo (2001). Stilbene compounds and stilbene synthase expression during ripening, wilting, and UV treatment in grape cv. Corvina. J. Agric. Food Chem. 49(11): 5531-5536.
Vitrac, X., S. Krisa, A. Decendit, J. Vercauteren, A. Nuhrich, J. P. Monti, G. Deffieux and J. M. Merillon (2002). Carbon-14 biolabelling of wine polyphenols in Vitis vinifera cell suspension cultures. J. Biotechnol. 95(1): 49-56.
Yamakawa, T., S. Kato, K. Ishida, T. Kodama and Y. Minoda (1983). Production of anthocyanins by Vitis cell in cell suspension culture. Agric. Biol. Chem. 47: 2185-2191.
Zhang, W., C. Curtin, M. Kikuchi and C. Franco (2002). Integration of jasmonic acid and light irradiation for enhancement of anthocyanin biosynthesis in Vitis vinifera suspension cultures. Plant Sci. 162: 459-468.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔