跳到主要內容

臺灣博碩士論文加值系統

(44.211.34.178) 您好!臺灣時間:2024/11/12 13:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳正雄
研究生(外文):Jeng-shiung Chen
論文名稱:使用釤鈷鹽為催化劑以電弧放電法製備奈米碳管
論文名稱(外文):Fabrication of Carbon Nanotubes Using Arc-Discharge System with Samarium-Cobalt Catalyst
指導教授:蔡宗惠
指導教授(外文):Jeff Tsung-hui Tsai
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:74
中文關鍵詞:奈米碳管電弧放電
外文關鍵詞:carbon nanorubesarc-dsicharge
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本實驗的主要目的為使用釤鈷鹽催化劑以電弧放電法製備奈米碳管。我們使用自行設計與組裝的電弧放電系統。由於釤鈷鹽催化劑是首次被應用於電弧放電技術成長奈米碳管,因此其成長奈米碳管之效能亦於本實驗中得到驗證。經由一系列的實驗,我們也得到實驗之優化參數。透過電子顯微鏡的觀察,我們觀察到多層奈米碳管的生成。我們使用商用多層碳管作為碳源,進而以優化參數條件下產生層數較少的奈米碳管。
在使用釤鈷鹽催化劑的狀況下,大部分的產物皆可量測到拉曼(Raman)光譜中的徑向呼吸模式(Radial Breathing Mode, RBM)。一般而言,此徑向呼吸模式是單層奈米碳管所特有的特徵訊號,或由極少層壁並較大直徑之多層奈米碳管所引發之頻譜。然而藉由穿透式電子顯微鏡的觀察,我們發現到其產物多數為多層奈米碳管且具有良好的石墨化結構和不具有竹節狀的缺陷。此觀察結果也呼應拉曼光譜的正切模式中,G-band 與D-band的高強度比值(~88)。但是我們所發現到的多層奈米碳管並不會產生徑向呼吸模式。因而我們推測所量測的徑向呼吸模式應是由單層奈米碳管所產生的,但因其產率過低以致難以在穿遂式電子顯微鏡中被觀察到。
在我們的實驗中,使用釤鈷鹽催化劑所成長的奈米碳管皆具有良好的石墨化結構,且在碳管內部並無催化劑粒子的形成。實驗的結果顯示運用釤鈷鹽為催化劑之電弧放電技術,是適用於成長高品質的奈米碳管的創新製程。
In this thesis, the carbon nanotubes (CNTs) was fabricated by arc-discharge method with the samarium-cobalt (Sm-Co) chloride as the catalyst. The experimental apparatus was designed and assembled by ourselves. The Sm-Co chloride was first applied as catalyst for CNT formation. The optimized recipes were also determined by a series experiments. By the TEM observations, we observed the main products are multi-walled carbon nanotubes (MWCNTs). We also used the commercial MWCNTs to serve as carbon sources and fabricated the MWCNT with less tube walls. With the assistance of the Sm-Co chloride catalyst, the radial breathing modes (RBMs) of the Raman spectra were measured. Generally, the RBM only belongs to the characteristic Raman signals of single-walled carbon nanotubes (SWCNTs) or induced by the thin MWCNTs with large outer diameter. The tunneling electron microscopy (TEM) observations revealed our nanotubes are mainly multi-walled. These tubes have good graphitic structures and less bamboo defects which agree with their Raman measurements with high IG/ID ratio (~88). The IG and ID are the intensity of the tangential modes (TMs) of the Raman spectra. These tubes were unlikely to generate RBMs due to the observation from TEM which the thick MWCNT were mainly found. We believe that the product from our arc-discharge system contain few SWCNTs which give RBMs. However, the quantity of these SWCNTs may be too low to be observed by TEM. In our experiments, the CNTs fabricated using Sm-Co chloride catalyst exhibited good quality in structure. Our CNTs have no catalyst particles encapsulated inside the tube which is the advantage using such catalyst to fabricate CNTs. Compare to the MWCNTs fabricated from chemical vapor deposition (CVD) which usually have bamboo defects and catalyst encapsulations. The results of our experiments show that it is an unique approach to grow high quality CNTs.
TABLES OF CONTENTS

ENGLISH ABSTRACT……….…………………..…………………………….i
CHINESE ABSTRACT…….……………....................………………………..ii
ACKNOWLEDGEMENTS…..………..…………………...………………….iii
TABLE OF CONTENTS….……………......…….……………..……………..iv
LIST OF FIGURES……………………......………………...………………….v
LIST OF TABLES……………….......…………………….….………………..vi
NOMENCLATURE….………………...…….…………….………………….vii
CHAPTER
I Introduction………………………………………………………….1
1.1 Scope of this study…………………………………………….1
1.2 Introduction of carbon nanotubes……………………………...1
1.2.1 History of discovery CNT…………………………….1
1.2.2 Characteristics of CNT………………………………..3
1.3 Introduction of arc-discharge method…………………………5

II Design of the Arc-Discharge System………………………………...9
2.1 Concept of building an arc-discharge system………………….9
2.2 Operation of the lab-assembly arc-discharge system……...10
III Effects of the Samarium-Cobalt Chloride as the Catalyst for Carbon Nanotubes Growth…………………………………………………..14
3.1 Initial proof of the functional catalyst…………...……………15
3.2 CNTs synthesized by different currents……..………………...24

IV Preparation of Carbon Nanotubes by Different Carbon Sources…….42
4.1 Fabricating CNTs from graphite at different pressure conditions………………………………………………...….42
4.2 Modification of MWCNT and bamboo removed………………53

V Conclusions………………………………………………………...68

REFERENCES………………………………………………………………...69

目錄

英文摘要…………………………………………...……………………………i
中文摘要…………………………………………..……………………………ii
誌謝……………………………………………….……………………………iii
目錄…………………………………………………….………………………iv
圖目錄………………………………………………….………………………vi
表目錄…………………………………………………..………………………x
符號索引………………………………………………….……………………xi
第一章 緒論…………………………………………………………………1
1.1 本文目的………………………………..…………………………1
1.2 奈米碳管導論…………………………..…………………………1
1.2.1 奈米碳管的歷史…………………………………………1
1.2.2 奈米碳管之特性…………………………………………3
1.3 電弧放電法簡介……………………………..……………………5

第二章 設計電弧放電系統…………………………………………………9
2.1 設計理念…………………………………………………………9
2.2 組裝電弧放電系統………………………………………………10

第三章 驗證釤鈷鹽催化劑在成長奈米碳管之效用……………………14
3.1 催化劑效用之初步驗證…………………………………………15
3.2 電流變因對產物之影響…………………………………………24

第四章 以不同碳源備製奈米碳管……………………………..…………42
4.1 以石墨為碳源在不同氣壓下成長奈米碳管……………………42
4.2 多層碳管型態之改變與竹節狀缺陷之去除……………………53

第五章 結論………………………………………………………………..68

參考文獻………………………………………………………………………69
REFERENCES

[1]Cassell A M, Scrivens W A and Tour J M 1996 Graphite electrodes containing nanometer-sized metal particles and their use in the synthesis of single-walled carbon nanotube composites. Chemistry of Materials 8 1545-9
[2]Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 C60: Buckminsterfullerene. Nature 318 162-3
[3] Krätschmer W, Fostiropoulos K and Huffman D R 1990 The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule. Chemical Physics Letters 170 167-70
[4] Dresselhaus M S, Dresselhaus G, Saito R and Jorio A 2005 Raman spectroscopy of carbon nanotubes. Physics Reports 409 47-99
[5]Iijima S 1991 Helical microtubules of graphitic carbon. Nature 354 56-8
[6]Odom T W, Huang J L, Kim P and Lieber C M 1998 Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391 62-4
[7]Iijima S and Ichihashi T 1993 Single-shell carbon nanotubes of 1-nm diameter. Nature 363 603-5
[8]Bethune D S, Klang C H, de Vries M S, Gorman G and Savoy R 1993 Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363 605-7
[9] Guo T, Nikolaev P, Thess A, Colbert D T, Smalley R E 1995 Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters 243 49-54
[10] Qin L C and Iijima S 1997 Structure and formation of raft-like bundles of single-walled helical carbon nanotubes produced by laser evaporation. Chemical Physics Letters 269 65-71
[11] Muñoz E, Maser W K, Benito A M, Martínez M T and Sauvajol J L 2001 The influence of the target composition in the structural characteristics of single-walled carbon nanotubes produced by laser ablation. Synthetic Metals 121 1193-4
[12] Saito Y, Tani Y, Miyagawa N, Mitsushima K and Nishina Y 1998 High yield of single-wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts. Chemical Physics Letters 294 593-8
[13] Qin L C 1997 CVD synthesis of carbon nanotubes. Journal of Materials Science Letters 16 457-9
[14] Hata K, Futaba D N, Mizuno K, Namai T and Iijima S 2004 Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306 1362-4
[15] Child C D 1913 Electric Arcs D.Van Nostrand Company New York p.6
[16] Wiles P G and Abrahamson J 1978 Carbon 16 341-9
[17]Ebbesen T W and Ajayan P M 1992 Large-scale synthesize of carbon nanotubes. Nature 358 220-2
[18] Rasch E and Tornberg K 1913 Electric Arc Phenomena D.Van Nostrand Company New York p.7
[19] Hoyaux M F 1968 Arc Physics Springer-Verlag New York p.2
[20] Bárdoš, Baránková H and Berg S 1995 A new method for film deposition in the discharge of target metal vapour. Surface and Coating Technology 72 174-80
[21] Borisov D, Goncharenko I M, Koval N N and Schanin P M 1998 Plasma-assisted deposition of a three-layer structure by vacuum and gas arcs. IEEE Transactions on Plasma Science 26 1680-4
[22] Siemroth P, Schülke T and Witke T 1994 High-current arc-a new source for high-rate deposition. Surface and Coating Technology 68/69 314-9
[23] Boxman R L, Beilis I I, Gidalevich E and Zhitomirsky V N 2005 Magnetic control in vacuum arc deposition: a review. IEEE Transactions on Plasma Science 26 1618-25
[24]Saito Y, Tani Y, Miyagawa N, Mitsushima K and Kasuya A et al. 1998 High yield of single-wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts. Chemical Physics Letters 294 593-8
[25] Child C D 1913 Electric arc. D. Van Nostrand company New York p.40
[26] Tsai J T H and Chen K H 2005 Enhanced growth of carbon nanotubes on selected area using an aqueous catalyst. International Journal of Nanoscience 4 431-6
[27] Rao A M, Richter E, Bandow S, Eklund P C and Dresselhaus M S et al. 1997 Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275 187-91
[28] Weber H W and Merlin 2000 Raman scattering in materials science p.315
[29] Zhao X and Ando Y 1998 Raman spectra and X-ray diffraction patterns of carbon nanotubes prepared by hydrogen arc discharge. Japanese Journal of Applied Physics 37 4846-9
[30]Sano N, Wang H, Alexandrou I, Chhowalla M and Teo K B K et al. 2002 Properties of carbon onions produced by an arc discharge in water. Journal of Applied Physics 92 2783-8
[31]Sano N, Wang H, Lee S B, Chhowalla M and Teo K B K et al. 2003 Carbon onions: Carriers of the 217.5 nm interstellar absorption feature. Physical Review Letters 90 155504
[32]Wang X, Xu B, Liu X, Guo J and Ichinose H 2006 Synthesis of Fe-included onion-like fullerenes by chemical vapor deposition. Diamond and Related Materials 15 147-150
[33]
McNeil L E, Park H and Lu J P 2004 Effect of residual on the vibrational modes of single-walled carbon nanotubes Journal of Applied Physics 96 5158-62
[34]
Ando Y, Zhao X and Shimoyama H 2001 Structure analysis of purified multiwalled carbon nanotubes. Carbon 39 569-74
[35]
Jinno M, Ando Y, Bandow S, Fan J, Iijima S et al. 2006 Raman scatting study of heat-treated carbon nanotubes: The origin of 1855 cm-1 Raman band. Chemical Physics Letters 418 109-14
[36]
Jinno M, Bandow S and Ando Y 2004 Multiwalled carbon nanotubes produced by direct current arc discharge in hydrogen gas. Chemical Physics Letters 398 256-9
[37]Jantoljak H, Salvetat J P, Forro L and Thomsen C 1998 Low-energy Raman-active phonons of multiwalled carbon nanotubes. Applied Physics A-materials science & processing 67 113-116
[38]Zhao X, Anod Y, Qin L C, Ktaura H and Saito R et al. 2002 Multiple splitting of G-band modes from individual multiwalled carbon nanotubes. Applied Physics Letters 81 2550
[39]
Reich S, Thomsen C and Maultzsch J 2004 Carbon nanotubes-Basic concepts and physical properties. Wiley-Vch Verlag GmbH & Co. KGaA p.125,162,174
[40]
Sano N, Wang H, Alexandrou I, Chhowalla M and Teo K B K 2002 Properties of carbon onions produced by an arc discharge in water. Journal of Applied Physics 92 2783-8
[41]
Sano N, Wang H, Amaratunga G A J, Chhowalla M and Teo K B K 2003 Carbon onions: Carriers of the 217.5 nm interstellar absorption feature Physical Review Letters 90 155504
[42]
Wang X, Xu B, Liu X, Jia H and Hideki I 2005 The Raman spectrum of nano-structured onion-like fullerenes. Physica B 357 277-81
[43]
Brockner W and Menzel F 1996 Genetic relationship between intrinsic Raman and infrared fundamental vibrations of the C60 and C70 fullerenes. Journal of Molecular Structure 378 147-63
[44]
Milnera M, Kürti J, Hulman M and Kuzmany H 2000 Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes. Physical Review Letters 84 1324-7
[45]
Jorio A, Saito R, Hafner J H, Lieber C M, Hunter M et al. 2001 Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Physical Review Letters 86 1118-21
[46]
Kürti J, Zolyomi V, Kertesz M and Sun G Y 2003 The geometry and radial breathing mode of carbon nanotubes: beyond the ideal behavior. New Journal of Physics 5 125
[47]
Jantoljak H, Salvetat J P, Farró and Thomsen C 1998 Low-energy Raman-active phonons of multiwalled carbon nanotubes. Applied Physics A 67 113-6
[48]
Zhao X, Ando Y, Qin L C, Kataura H, Maniwa Y et al. 2002 Characteristic Raman spectra of multiwalled carbon nanotubes. Physica B 323 265-6
[49]
Zhao X L, Ando Y, Qin L C, Kataura H, Maniwa Y et al. 2002 Radial breathing modes of multiwalled carbon nanotubes. Chemical Physics Letters 361 169-74
[50]
Wang C Y, Ru C Q and Mioduchowski A 2005 Free vibration of multiwall carbon nanotubes. Journal of Applied Physics 97 114323
[51]Amelinckx S, Bernaerts D, Zhang X B, Tendeloo G V and Landuyt J V 1995 A structure model and growth mechanism for multishell carbon nanotubes. Science 267 1334-8
[52]Jorio A, Santos A P, Ribeiro H B, Fantini C and Souza M et al. 2005 Quantifying carbon-nanotube species with resonance Raman scattering. Physical Review B 72 075207
[53]Alekseyev N I and Dyuzhev G A 2003 Fullerene formation in an arc discharge. Carbon 41 1343-8
[54]Shi Z J, Lian Y F, Zhou X H, Gu Z N and Iijima S et al. 1999 Production of single-wall carbon nanotubes at high pressure. Journal of Physical Chemistry B 103 8698-701
[55]Journet C, Maser W K, Bernier P, Loiseau A and Fischer J E et al. 1997 Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388 756-8
[56]Zhong R, Cong H T and Liu C 2002 Fabrication of single-walled carbon nanotubes from multi-walled carbon nanotubes and carbon fibers Carbon 40 2970-3
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李培聞(1996)。認識憂鬱症及其處理。學生輔導,(46),56-61。
2. 牟秀善(1996)。社會工作者如何協助慢性精神病患家屬之疾病管理。社區發展季刊,(76),113-119。
3. 李淑霞、吳淑瓊(1998)。家庭照護者負荷與憂鬱之影響。護理研究,6(1),57-67。
4. 李選、葉美玉(1992)。家屬治療對改善躁鬱症病患家屬疾病認知與因應能力成效之探討。護理雜誌,39(3),41-52。
5. 宋麗玉(1998)。精神病患照顧者之憂鬱程度與其相關因素探討。公共衛生,25(3),181-193。
6. 宋麗玉(1999)。精神病患照顧者之探究:照顧負荷之程度與其相關因素。中華心理衛生學刊,12(1),1-30。
7. 吳秀碧(1996)。情緒發展與健康人格。輔導通訊,(48),17-19。
8. 吳英璋(1994)。從健康、壓力與因應談全方位的身心均衡。學生輔導通訊,(34),30-33。
9. 吳就君(1995)。精神病患家庭照護者的負荷研究:跨國文化比較。中華心理衛生學刊,8卷(1),37-52。
10. 沈志仁、張素凰(1993)。精神病患者家屬的壓力源、應對策略與健康狀況—時間序列的探討。中華心理衛生學刊,6卷(1),89-116。
11. 林杏霞(1996)。心理調適。社教資料雜誌,(216),1-7。
12. 林麗嬋、歐美、吳肖琪(1997)。長期照護中主要照顧者之家庭功能、社會支持與情緒。護理研究,5卷(1),77-85。
13. 邱啟潤、許淑敏、吳瓊滿(2002)。主要照顧者負荷、壓力與因應之國內研究。醫護科技學刊,4卷(4),273-290。
14. 邱啟潤、許淑敏、吳淑如(2003)。居家照護病患之主要照顧者綜合性需求調查。醫護科技學刊,5卷(1),12-25。
15. 柯慧貞、陸汝斌(2002)。認識憂鬱症。學生輔導,(80),16-27。