跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/15 23:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳彥菱
研究生(外文):Yen-Ling Chen
論文名稱:奈米混成二氧化錫/奈米碳管氣體感測器之製備與特性研究
論文名稱(外文):Fabrication and Properties of Nano Hybrid SnO2/CNTs Gas Sensor
指導教授:林鴻明林鴻明引用關係
指導教授(外文):Hong-Ming Lin
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:99
中文關鍵詞:二氧化錫奈米碳管氣體感測器
外文關鍵詞:SnO2CNTsGas Sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:588
  • 評分評分:
  • 下載下載:176
  • 收藏至我的研究室書目清單書目收藏:1
近年來,隨著工業的進展及環保意識的重視,各種廢氣量日益增加,對於有毒氣體如CO, CO2, SO2, NO2等在環境的控制。它們對人體有害,此外對環境也造成傷害如酸雨主要酸的來源。藉由奈米材料製造技術,降低材料使用量和環境污染源。本研究是將奈米碳管在室溫下具有極佳的導電性和二氧化錫的對氣體反應靈敏特性做結合,使氣體感測器朝向應答速率快、元件製作容易及攜帶方便等優點。
奈米碳管為奈米結構具有非凡的電子和機械特性。奈米碳管的潛在應用包括微電子裝置、冷陰極平面顯示器(FPD)、儲氫、量子線、顯微鏡的掃瞄碳針和高能電化學電容器。由於奈米碳管具中空結構、奈米尺寸、大的表面積以及在室溫具有良好的導電性,因此成為吸收和偵測氣體理想的材料。此研究藉由奈米碳管複合半導體材料以改善氣體感測性質。應用溶膠凝膠法製造氧化錫,以二氯化錫為前驅物,覆蓋在酸處理後的多壁奈米碳管的表面上。在經過300℃或400℃熱處理後,可在奈米碳管表面上生成大小範圍為3到15 nm的氧化錫粒子。調整溶液中二氯化錫前驅物的濃度,可以控制不同厚度的二氧化錫薄膜披覆於奈米碳管表面。合成材料的特性經由X-ray, TEM, HRTEM, 及TGA-DTA進行分析。二氯化錫和混成二氯化錫/奈米碳管的材料,分別直接滴在金電極印刷的氧化鋁基板上,並在室溫下烘乾。奈米碳管的混成感測器加熱至400℃下持溫一天,使其材料結構穩定。之後探討合成材料在不同的NO2濃度10、30、50、100 ppm及不同的操作溫度50、100、150、200 ℃下材料的電特性。
實驗結果顯示氧化錫可藉由溶膠凝膠法成功包覆在奈米碳管的表面。且由混成二氧化錫/奈米碳管 (A4) 及 (B1) 的氣體感測結果顯示,隨著操作溫度的增加,靈敏度提高,而其最佳操作溫度在150 ℃。此混成奈米碳管材料不僅相對於傳統的純二氧化錫有更低的工作溫度,且在接近室溫時對於NO2具有感測特性。
Recently, due to the industrial development and environmental protection pay much attention and various kinds of exhaust gas increase. The noxious gases such as CO, CO2, SO2 and NO2 control in the atmosphere. They are very toxic for human body and moreover with indirect harm to the environment such as main acidic species in acid rain. By producing the nanocrystalline materials decrease the material consumption and pollutant of environment. In this study, carbon nanotubes good conductivity at the room temperature combine with SnO2 high sensitive to gas and make gas sensor toward high response, easy manufacture and carry convenient.
Carbon nanotubes are nanostructures with remarkable electronic and mechanical properties. Potential applications of CNTs include microelectronic devices, cold cathode flat panel displays (FDP), hydrogen storage, quantum wires, tips for scanning probe microscopes and high power electrochemical capacitors. CNTs are ideal materials for adsorption and detection of gas due to their hollow center, nano-scale size, large specific surface area, and good conductivity at the room temperature. In this study, the hybrid CNTs with MOS material will be synthesized and examined its sensing properties. By sol-gel method using the precursor of Tin (Ⅱ) chloride, tin oxide is coated on acid-treated multi wall carbon nanotubes. After heat treatment at temperature 300℃ or 400℃, SnO2 particles form on the surface of carbon nanotubes with the sizes from about 3 to 15 nm. The contents of Tin (Ⅱ) chloride in solution are used to adjust the thickness of SnO2 films on carbon nanotubes. The characteristic of this hybrid materials are analysis by X-ray diffraction, SEM, HRTEM, and TGA-DTA. The pure SnO2 and SnO2/MWCNTs are separated coated on the Au electrodes printed alumina substrates in dry atmosphere at room temperature. Hybrid SnO2/MWCNTs sensor heated at 400℃ for one day to stabilize the structure of sensor. Nano hybrid SnO2/MWCNTs and SnO2 sensors detect various concentrations of NO2 from 10 to 100 ppm at different working temperatures of 50℃, 100℃, 150℃and 200℃.
Experimental results indicate it is possible to coating the nano SnO2 on the surface of carbon nanotubes by the sol-gel method. Sensitivities of SnO2/MWCNTs (A4) and (B1) are enhanced and the optimum working temperature is about 150 ℃. It shows the hybrid SnO2/MWCNTs decrease the sensing operation temperature and enhance the gas sensitivity for NO2 gas at room temperature.
中文摘要…………………………………………………………………Ⅰ
ENGLISH ABSTRACT…………………………………………………Ⅲ
CONTENTS……………………………………………………………Ⅴ
LIST OF FIGURES………………………………………………………Ⅷ
LIST OF TABLES……………………………………………………ⅩⅦ
CHAPTER 1 INTRODUCTION…………………………………………1
CHAPTER 2 LITERATURE REVIEW…………………………………3
2.1 Nanoparticles…………………………………………………………3
2.1.1 The properties of nanoparticles…………………………………3
2.1.2 The application of nanoparticles………………………………6
2.2 Carbon Nanotubes……………………………………………………7
2.2.1 Introduction of Carbon Nanotubes………………………………7
2.2.2 Synthesis of Multi-Walled Carbon Nanotube…………………12
2.2.3 The Application of Carbon Nanotubes ………………………13
2.3 Sol-Gel Technique……………………………………………………16
2.4 Tin(Ⅳ) Oxide…………………………………………………………19
2.4.1 Introduction of Tin (Ⅳ) Oxide…………………………………19
2.4.2 Synthesis of Tin Oxide…………………………………………20
2.4.3 Raman and IR analysis of Tin Oxide…………………………21
2.5 Gas Sensor……………………………………………………………23
2.5.1 Sensing Mechanism……………………………………………24
2.5.2 Schottky Barrier………………………………………………26
2.5.3 The Effect Factors on Gas Sensor……………………………27
2.5.4 Carbon Nanotubes in Gas Sensors……………………………32
2.5.5 Tin Oxide in Gas Sensors………………………………………37
2.6 Coating multi-walled carbon nanotubes with tin (Ⅳ) oxide…………39
CHAPTER 3 EXPERIMENT…………………………………………….43
3.1 Sample Preparation…………………………………………………43
3.1.1 Preparation of SnO2/MWCNTs………………………………43
3.1.2 The preparation of SnO2/MWCNTs sensors …………………48
3.2 Analytical Methods…………………………………………………49
A. X-Ray Diffraction (XRD)…………………………………………49
B. Scanning Electron Microscopy (SEM)……………………………49
C. Transmission Electron Microscopy (TEM)………………………49
D. High-Resolution Transmission Electron Microscope……………50
E. Raman Scattering Spectroscopy(RS)…………………………50
F. TGA…………….…………………………………………………50
G. EDS Analysis………………………….…………………………50
H. Electrical characterization Measurement………………………51
CHAPTER 4 RESULTS AND DISCUSSION …………………………54
4.1 Morphological Microstructures…………………………………54
4.1.1 SEM Analysis…………………………………………………54
4.1.2 TEM Analysis…………………………………………………58
4.1.3 HRTEM Analysis……………………………………………62
4.2 EDS Analysis…………………………………………………64
4.3 XRD Analysis…………………………………………………65
4.4 Raman analysis…………………………………………………67
4.5 TGA analysis……………………………………………………68
4.6 The Analysis of Electrical properties…………………………69
CHAPTER 5 CONCLUSIONS…………………………………………88
CHAPTER 6 SUGGESTION OF FUTURE STUDIES…………………90
REFERENCES……………………………………………………… 91
[1] Ravindran S, Chaudhary S, Colburn B, Ozkan M, Ozkan CS.Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device application. Nano Lett 2003; 3:447–52.
[2] S. Iijima, Nature, 354 (1991) 56.
[3] G. M. Chow, L. K. Kurihara, K. M. Kemner, P. E. Schoen, W. T. Elam, A. Ervin, S. Keller, Y. D. Zhang, J. Budnick and T. Ambrose, J. Mater Res., Vol. 10 No. 6 (1995) 1546-1554.
[4] S. Shukla, S. Seal. Sol- Gel- Derived Oxide and Sulfide Nanoparticles. Synthesis, Functionalization and Surface Treatment of Nanoparticles Edilted by M.-I. Baraton.
[5] Bower C, Rosen R, Jin L, Han J, Zhou O. Deformation of carbon nanotubes in nanotube-polymer composites. Appl phys Lett 1999; 74: 3317-9.
[6] Lau KT, Hui D. The revolutionary creation of new advanced materials-carbon nanotube composites. Comp Pt B: Engg 2002; 33: 263-77.
[7] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullenrenes and Carbon Nanotubes, Academic, New York, 1996, Chap. 19.
[8] Che JW, Cagin T, Goddard Ⅲ WA. Nanotechnology 2000, 11: 65.
[9] PG Collins, MS Arnold, P Avouris. Science.2001, 292, 706.
[10] M. Endo, CHEMTECH 18, 568 (1988). September issue.
[11] J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. B 68, 631 (1992).
[12] http://sciencemag.org/cgi/content/abstract/287/5453/637.
[13] B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han , A. Zettl ,R.O. Ritchie. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Materials Science and Engineering A334 (2002) 173–178.
[14] M.J.Heben et al, Nature, 386, 377 (1997).
[15] A Yu Kasumov et al. 1999 Science 284 1508.
[16] M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, and H . A. Goldberg,Graphite Fibers and Filaments (Springer-Verlag,Berlin,1988), Vol.5 of Springer Series in Materials Science.
[17] A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Grown 32,335 (1976).
[18] Shilun Ruan, Ping Gao, T. X. Yu, Ultra-strong gel –spun UHMWPE fibers reinforced using multiwalled carbon nanotubes.
[19] N. S. Lee, D. S. Chung, I. T. Han, J. H. Kang, Y. S. Choi, H. Y. Kim, S. H. Park, Y. W. Jin, W. K. Yi, M. J. Yun, J. E. Jung, C. J. Lee, J. M. Kim. Application of carbon nanotubes to field emission displays.
[20] Liqiu Guo, Rui Wang, Huaming Xu, Ji Liang, Why can the carbon nanotube tips increase resolution and quality of image in biological systems? Physica E 27 (2005) 240-244.
[21] J. J. Ebelmen, Sur une production artificial de silice diaphane, Comptes Rendus Acad. Sci. Fr., 19, 398 (1844).
[22] htp://www.chemat.com/html/solgel.html.
[23] I.C. Klein, Sol-Gel Technology, Noyes Pub. Park-Ridge (1998).
[24] K. C. Chen, T. Tsuchiya, J. D. Mackenzie, Sol-gel processing of silica, J. Non-Cryst. Solids, 81, 227 (1986).
[25] J. Rockenberger, U. Felde, M. Tischer, L. Troger, M. Haase, H.
Weller, J. Chem. Phys. 112 (2000) 4296.
[26] Brewer L. Thermodynamic properties of the oxide and their vaporization process. Chem Rev 1953; 52: 1-75.
[27] N.Y. Shishkin, I.M. Zharsky, V.G. Lugin, V.G. Zarapin, Air sensitive
tin dioxide thin films by magnetron sputtering and thermal oxidation technique, Sens. Actuators, B 48_1998. 403–408.
[28] S.C. Ray, M.K. Karanjai, D. Dasgupta, Preparation and study of
doped tin dioxide films by the open air chemical vapour deposition
technique, Thin Solid Films 307_1997. 221–227.
[29] T. D. Senguttuvan and L. K. Malhotra, Electronic structure of sol-gel derived SnO2 thin films, J. Chem Solids Vol 58(1997) 19-24.
[30] Jianrong Zhang and Lian Gao, Synthesis and characterization of nanocrystalline tin oxide by sol–gel method, Journal of Solid State Chemistry 177 (2004) 1425–1430.
[31] 陳欣忠,碩士論文:使用無機先驅物由溶膠至二氧化錫薄膜之演化研究,國立中山大學材料科學與工程研究所
[32] J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, N.
Yamazoe, Dilute hydrogen sulfide sensing properties of CuO–SnO2
thin film prepared by low-pressure evaporation method, Sens. Actua-
tors, B 49_1998.121–125.
[33] D. Briand, M. Labeau, J.F. Currie, G. Delabouglise, Pd-doped SnO2
thin films deposited by assisted ultrasonic spraying CVD for gas
sensing: selectivity and effect of annealing, Sens. Actuators, B 48
_ 1998. 395–402.
[34] Aboaf, A.; Marcotte, V.; Chou, N. Electrochem Soc.1973, 120, 701.
[35] Nagano, M. J. Cryst. Growth 1984, 67, 639.
[36] Vitor Baranauskas, M´arcio Fontana, Zhao Jing Guo,Helder Jos´e Ceragioli, Alfredo Carlos Peterlevitz, Field-emission properties of nanocrystalline tin oxide films, Journal of Solid State Chemistry 177 (2004) 1425–1430.
[37] S.H. Sun, G.W. Meng, G.X. Zhang, T. Gao, B.Y. Geng, L.D. Zhang,
J. Zuo, Raman scattering study of rutile SnO2 nanobelts synthesized
by thermal evaporation of Sn powders, Chem. Phys. Lett. 376 (2003)
103–107.
[38] A. Di´eguez, A. Romano-Rodr´ıguez, J.R. Morante, U. Weimar,
M. Schweizer-Berberich, W. G¨opel, Morphological analysis on
nanocrystalline SnO2 for gas sensor applications, Sens. Actuators
B 31 (1996) 1–8.
[39] J. Zuo, C. Xu, X. Liu, C. Wang, C. Wang, Y. Hu, Y. Qian, Study
of the Raman spectrum of nanometer SnO2, J. Appl. Phys. 75 (3)
(1994) 1835–1836.
[40] V. Lantto, Semiconductor gas sensors based on SnO2 thick films, in: G. Sberveglieri (Ed.), Gas Sensors, Principles, Operation and Developments, Kluwer Academic Publishers, Dordrecht, 1992. pp. 117-168.
[41] J. Mizsei, How can sensitive and selective semiconductor gas sensors be made. Sensors and Actuators B 23 (1995) 173-176.
[42] C. Xu, T. Jun, N. Miura and N. Yamazoe, Chem.Lett, (1990) 441.
[43] 林鴻明,曾世杰,2000,“奈米半導體材料之特殊氣體感測性質”,工業材料,第157期 163-169.
[44] R.Rella,A.Serra,P.Siciliano,L.Vasanelli,G.De,A.Licciulli,A.Quirini,Tin Oxide-based gas sensors prepared by the sol-gel process, Sensors and Actuators B 44 (1997) 462-467.
[45] Muriel Sauvan,Christophe Pijolat,Selectivity improvement of SnO2 films by superficial metallic films,Sensor and Acuator B 58 (1999) 295-301.
[46] The Environmental Response Team. Standard Operating Procedure No. 2114 (Environmental Protection Agency, Washington DC) (http://www.ertresponse.com/sops/2114.pdfl (1994).
[47] Flame ionization detector, product data sheet (SRI Instruments, Torrance, CA) (http://www.srigc.com/FID.pdfl (1998).
[48] Miniaturized gas ionization sensors using carbon nanotubes Ashish Modi, Nikhil Koratkar, Eric Lass , Bingqing Wei, and Pulikel M Ajayan, Nature , 424(2003), 171-174.
[49] S. Santucci, S. Picozzi, F. Di Gregorio ,and L. Lozzi, C. Cantalini, L. Valentini and J. M.Kenny, B. Delley, J. Chem. Phys., 119 (2003), 10904-10910.
[50] L. Valentini, C. Cantalini, L. Lozzi, I. Armentano, J.M. Kenny, S. Santucci, Reversible oxidation effects on carbon nanotubes thin films for gas sensing applications, Materials Science and Engineering C 23 (2003) 523–529.
[51] C. Cantalini, L. Valentini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci, Carbon nanotubes as new materials for gas sensing applications, Journal of the European Ceramic Society 24 (2004) 1405–1408.
[52] L. Valentini, C. Cantalini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci, Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection, Diamond and Related Materials 13 (2004) 1301–1305.
[53] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng,K.
Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science 287 (2000) 622-625.
[54] M. Horrillo, A. Serventi, D. Rickerby, J. Gutie´rrez, Influence of tin
oxide microstructure on the sensitivity of reductor gases, Sens.
Actuators, B 58 (1999) 474–477.
[55] M. Horrillo, J. Gutierrez, L. Ares, J. Robla, I. Sayago, J. Getino,
J. Agapito, The influence of the tin-oxide deposition technique on
the sensitivity to CO, Sens. Actuators, B Chem. 24–25 (1995) 507–511.
[56] K. Steiner, U. Hoefer, G. Kuhner, G. Sulz, E. Wagner, Ca- and
Pt-catalysed thin-film SnO2 gas sensors for CO and CO2 detection,
Sens. Actuators, B Chem. 24–25 (1995) 529–531.
[57] Z. Jin, H. Zhou, Z. Jin, R. Savinell, C. Liu, Application of
nanocrystalline porous tin oxide thin film for CO sensing, Sens.
Actuators, B Chem. 52 (1998) 188–194.
[58] Ravindran S, Chaudhary S, Colburn B, Ozkan M, Ozkan CS. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device application. Nano Lett 2003; 3: 447–52.
[59] Azamian BR, Coleman KS, Davis JJ, Hanson N, Green MLH.
Directly observed covalent coupling of quantum dots to singlewalled
carbon nanotubes. Chem Commun 2002; 4: 366–7.
[60] Banerjee S, Wong SS. Synthesis and characterization of carbon
nanotube-nanocrystal Heterostructures. Nano Lett 2002; 2: 195–
200.
[61] Haremza JM, Hahn MA, Krauss TD. Attachment of single CdSe
nanocrystals to individual single-walled carbon nanotubes. Nano
Lett 2002; 2: 1253–6.
[62] Han WQ, Zettl A. Coating single-walled carbon nanotubes with
tin oxide. Nano Lett 2003; 3: 681–3.
[63] Liping Zhao, Lian Gao“ Filling of multi-walled carbon nanotubes with tin (Ⅳ) oxide” Carbon 42 (2004) 3269-3272.
[64] Liping Zhao, Lian Gao“Coating of multi-walled carbon nanotubes
with thick layers of tin(IV) oxide”Carbon 42 (2004) 1858–1861.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top