跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 20:07
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

 
twitterline
Author:葉怡君
Author (Eng.):Yi-Chun Yeh
Title:低溫電漿改質ePTFE膜及表面固定鈦/磷氧化物之研究低溫電漿改質ePTFE膜及表面固定鈦/磷氧化物之研究
Title (Eng.):The Study of Plasma Modified ePTFE Films and Surface Immobilization of Oxides of Titanium and Phosphorus.
Advisor:陳克紹陳克紹 author reflink
advisor (eng):Ko-Shao Chen
degree:Master
Institution:大同大學
Department:材料工程研究所
Narrow Field:工程學門
Detailed Field:材料工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2006
Graduated Academic Year:94
language:English
number of pages:98
keyword (chi):ePTFE膜抗菌電漿改質氧化鈦氧化磷
keyword (eng):ePTFE filmantibioticplasma modificationtitanium oxidesphosphate oxides
Ncl record status:
  • Cited Cited :0
  • HitsHits:426
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:76
  • gshot_favorites title msgFav:2
拉伸性鐵氟龍(expanded polytetrafluoroethylene,ePTFE)薄膜為一表面極為疏水的安定性多孔性材料,為改善並提升其表面親水性及賦予表面抗菌及吸附菌體特性,本研究利用(1)低溫電漿處理於ePTFE 膜表面進行親水性改質,(2)以溶液凝膠法旋轉塗怖有機鈦薄膜,(3)氧氣電漿處理取代傳統燒結處理,將表面的有機鈦氧化有機物,最後(4)將氧化鈦薄膜浸泡 5wt%磷酸鈉溶液以低瓦數的UV光照射活化表面及吸附固定磷酸根結合使表面磷酸化。
首先利用低溫HMDSZ電漿(10W/10min/50mtorr)沉積有機矽膜於ePTFE表面,以氧氣電漿(50W/10min/200mtorr)活化有機矽膜,由親水性變化結果顯示,經由雙重電漿處理後基材表面親水性提高(125°→8°)。表面塗佈有機鈦薄膜,以氧氣電漿處理(75W/45min/200mtorr)氧化形成氧化鈦膜,由化學分析表面鍵結結果顯示,基材表面有Ti-C、Ti-O、TiO2鍵結出現。以UV光活化氧化鈦薄膜固定磷酸根,以元素分析及化學鍵結分析結果顯示,基材表面有P原子產生、O-P-O鍵結出現,藉此佐證成功使表面磷酸化。抗菌測試表面抗菌及吸附菌能力,發現表面磷酸化的基才在無光線的情形下與對照組比較,表面磷酸化具有吸附菌體能力,UV光照射下,可在20~30分鐘達到表面抗菌效果。
Expanded polytetrafluororthylene (ePTFE) film is a kind of surface hydrophobic materials. The titania coating can improve the surface antibacterial and absorptive bacterium properties. The commercial method for titania coating is spin coatings. Since the hydrophobic surface of ePTFE film makes the spin coating infeasible, the plasma polymerization of HMDSZ and subsequent plasma oxygen treatment is required to enhance hydrophilic properties. It was found that hydrophilic groups, e.g. hydroxyl and silicone-oxide species, can be formed on the surface-modified by plasma treatment. The water contact angle was substantially decreased from 125° to 8°. In term of water contact angle , the optimal treatment is HMDSZ plasma(10W/10min/50mtorr) and Oxygen plasma (50W/10min/200mtorr). On the plasma-treated surface, the TiOx-containing film was spin-coated (1200 rpm, 25s) from sol-gel solution. Conventionally the as-spinned film was annealed to reduce the organic residues. However, the high temperature treatment is not appropriate for the thermal-sensitive organic materials, such as ePTFE. In this study, the post plasma oxidation was attempted to reduce the organic residues of the TiOx-containing film on ePTFE. In term of water contact angle, the optimal treatment is Oxygen plasma (75W/45min/200mtorr). After plasma oxygen oxidation, the relative intensity of methyl group to the Ti-C, Ti-O and TiO2 groups was found to increase from the chemical analyses. After immobilization, the presence of P atom and O-P-O on surface indicates the phosphate ion is successfully immobilized by UV irradiation. The antibacterium test shows that the amount of bacteria was decreased after TiOx coating with oxygen plasma treated. To enhance the antibiotic behavior, the surface phorylation can facilitate the absorption of bacteria to “trap” the bacteria in dark. The synergetic effect of trapping of bacteria on phorylated sites and the intrinsic antibiotic properties of titania can further enhance the antibiotic effect on the ePTFE. The surface phorylation would gradually reduce the population of bacteria after 20min ~30 min UV irradiation in antibiotic test. The reproductivity of the antibacterium properties seems to be fairly good in this method.
INDEX
Englishi Abstract.........................................................................................I
Chinese Abstract………………………………………………………...III
LIST OF TABLES…… ..........................................................................IV
LIST OF FIGURES ..................................................................................V

Chapter 1
Introduction……………………………………………………………....1
1.1.1 Polytetrafluoroethylene (PTFE)………………..……………….…2
1.1.2 Expanded polyterafluoroethylene (ePTFE)…………………….....4
1.1.3 Surface modification of ePTFE……………………………….…..5
1.2.1 Plasma……………………………………………………………..9
1.2.2 Plasma Modifications……………………………………….……10
1.2.3 Plasma Treatment………………………………………….……..12
1.3.1 Sol-gel Method…………………………………………….……..15
1.3.2 Sol-gel Process…………………………………………….……..15
1.4.1 Titanium Oxide…………………………………………….……..17
1.5.1 Pseudomonas aeruginosa................................................................18
1.5.2 Staphylococcus aureaus…………………………………………..20

Chapter 2
Experiment…...………………...……………………………………….26
2.1 experiment flowchart……………………………………...………...27
2.2 Materials and Agents…………………………………………….….28
2.2.1 Substrates…………………………………………………………28
2.2.2 Reagents for cleaning sample surface………………………...…..28
2.2.3 Gases for plasma treatment…………………………………….…28
2.2.4Monomers for plasma deposition…………………………...……28
2.2.5 The precursor of TiO2 coating solution…………………………...29
2.2.6 Solution of phosphate solution……………………………...……29
2.2.7 Culture Media………………………………………………….....29
2.3 Sample preparation…………………………………………………30
2.4 Plasma surface modification………………………………………..30
2.4.1 Cold plasma deposition…………………………………………..30
2.4.2 The silicon-contained film has been treated by O2 plasma……….31
2.4.3 Spin coated sol-gel solution……………………………………....31
2.4.4 O2 plasma post-treatment…………………………………………31
2.4.5 Absorptive ion of chemical grafting method……………………..32
2.5 Analyses methods…………………………………………………33
2.5.1 Surface hydrophilicity…………………………………………..33
2.5.2 SEM analyses…………………………………………..……….33
2.5.3 ATR-FTIR analyses………………………………………..……33
2.5.4 ESCA (XPS) analyses…………………………………………..34
2.5.5 FESEM and EDS analyses………………………………………34
2.5.6 QCM analyses…………………………………………………...34
2.5.7 Bacteriostasis flowchart…………………………………………35

Chaptet 3
Results and Discussion…………………………………..…………….40
3.1 The wetability of modified surface……………………………..…41
3.2 SEM morphology observation…………………………………….45
3.3 FESEM morphology observation…………………………………48
3.4 The analyses of element with surface-modified…………………..51
3.5 FTIR………………………………………………………..……..61
3.6 XPS………………………………………………..………….…..65
3.7 The frequency change after each surface treatment……………....76
3.8 Antibiotic test……………………………………………………..78

Chapter 4
Conclusion…………………………..…………………….…………..90
Reference…………………….……………………………….……….92
1. T. R. Dargavillea, G. A. Georgeb, D. J. T. Hilla, and A. K. Whittakerc, Prog. Polym. Sci. 28, 1355–1376(2003).
2.Sujata V. Bhat, Biomaterials, Alpha Science International Ltd, Pangbourne England, 2002.
3.U. Konig, M. Nitschke, A. Menning, G. Eberth, M. Pilz, C. Arnhold, F. Simon, G. Adam, and C. Werner *, Colloids and Surf. B: Biointerf. 24, pp 63–71(2002).
4.Xiao-Lin Wanga*, Jian Huangb, Xiu-Zhen Chen”, Xue-Hai ,Desalination 146 (2002) 337-343
5. Meiping Wu, J. Appl. Polym. Sci. Vol 43, pp2067-2082(1991).
Jiaguo Yu, Xiujian Zhao, Qingnan Zhao,MaterialsChemistry and Physics ,69 (2001) 25–29。
6.I. Tsyganov , M.F. Maitz,, E. Wieser, F. Prokert, E. Richter, A. Rogozin, Surface and Coatings Technology 174 –175 (2003) 591–596
7.Y. Hatanaka, H. Naito, S. Itou, M. Kando, Applied Surface Science 244 (2005) 554–557
8. H. Szymanowski, A. Sobczyk, M. Gazicki-Lipman, W. Jakubowski, L. Klimek, Surface & Coatings Technology 200 (2005) 1036– 1040
9.Y.X. Leng, N. Huang, P. Yang, J.Y. Chen, H. Sun, J. Wang, G.J. Wan, X.B. Tian, K.Y. Fu, L.P. Wang, P.K. Chu, Surface and Coatings Technology 156 (2002) 295–300
10.Masatoshi Nakamura, Lucel Sirghi, Toru Aoki, Yoshinori Hatanaka, Surface Science 507–510 (2002) 778–782
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
1. Application of low-temperature plasma modified acrylic acid grafted PET fibers for the removal of heavy metals
2. Dual Functionality of TPU Nonwoven Prepared by Plasma Treatment and Surface Grafting 2-Acrylamido-2-Methylpropanesulfonic Acid
3. Progressive Construction of the Digital Map using GPS Traces
4. The Study of Plasma Modified ePTFE Films and Surface Immobilization of Oxides of Titanium and Phosphorus.
5. Fabrication of high sensitive and water- resistive humidity sensor by phenol formaldehyde resin and plasma treatment
6. Surface Modification of ePTFE Film by Cold Plasma/Photo-grafting and Subsequent Immobilization of Condroitin-6-Sulphate
7. Plasma hydrophilic modified substrate for immobiligation of Gellan Gum
8. Immobilization of Chitosan and Chondroitin-6-sulfate Mulitlayers on Thermoplastic polyurethanes (TPU) Nonwoven or e-PTFE Film by Duplex techniques Plasma Treatment and Graft Polymerization
9. Surface Modification of Materials by Cold Plasma Treatment and Subsequently Grafting Polymerization Hydrogel for Biomedical Applications
10. Immobilzation of antisoluble hydrophilic moisture sensitive film onto resistance type sensor devicer
11. MODEL ESTABLISHMENT AND ANALYSIS OF THE HDMI HIGH SPEED CONNECTOR
12. Painting and Rendering Octree Textures on Models
13. THE REFERENCE PRICE AND PROMOTION SITUATIONS ON ONLINE FEMALE SHOPPERS' PURCHASING INTENTION-THE MODERATING EFFECT OF PERCEIVED RISK
14. TRAVEL TYPES AS A MODERATOR FOR STUDY OF RELATIONSHIPS AMONG TRAVEL MOTIVATION, TRAVEL SATISFACTION, AND DESTINATION LOYALTY
15. The effect of plasma treatment for improving silicon oxide film
 
system icon system icon