跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 23:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭志民
研究生(外文):Chih-Ming Kuo
論文名稱:膜厚與中間層對射頻電漿輔助化學氣相沈積類鑽碳膜之影響
論文名稱(外文):The Effects of Film Thickness and Intermediate layer on the DLC Films Synthesized by RF Plasma Enhanced Chemical Vapor Deposition
指導教授:曾信雄曾信雄引用關係
指導教授(外文):Shinn-Shyong Tzeng
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
論文頁數:88
中文關鍵詞:膜厚射頻電漿輔助化學氣相沈積類鑽碳膜非晶質矽中間層
外文關鍵詞:film thicknessRF plasma enhanced chemical vapor depositiondiamond-like carbonamorphous silicon intermediate layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:1
本實驗以射頻電漿輔助化學氣相沈積法沈積類鑽碳膜,藉由改變反應氣體、氣體流量、電漿功率、工作壓力與沈積時間等製程條件,利用拉曼測量碳膜的微結構,邁克森干涉儀與奈米壓痕量測碳膜的機械性質,更進一步在相同基板上沈積不同厚度的非晶質矽中間層與在不同基板上沈積相同厚度的非晶質矽中間層,研究中間層與基材對類鑽碳膜結構與性質之影響。
由實驗結果顯示,利用射頻甲烷與乙炔電漿在工作壓力0.3 torr、功率60 W條件下,碳膜的sp3鍵結含量、硬度與楊氏模數皆隨著氣體流量的增加而下降。以乙炔為反應氣體所沈積碳膜的硬度與楊氏模數均大於以甲烷為反應氣體所沈積的碳膜。殘留應力則隨著乙炔流量的增加而下降,但隨著甲烷流量的改變並沒有明顯的變化。碳膜中sp3鍵結含量隨著工作壓力的增加,鍍膜離子能量下降而下降,導致碳膜的硬度、楊氏模數與殘留應力下降。在乙炔工作壓力0.3 torr、氣體流量10 sccm條件下,功率20 W(-270 V)的離子能量不足,碳膜為微晶石墨結構,硬度、楊氏模數與殘留應力低。隨著功率增加,碳膜內sp2鍵結含量下降,在功率60 W(-780 V)有最大硬度、楊氏模數與殘留應力。至功率80 W(-950 V)時,過高的離子能量使得碳膜產生熱震(thermal spike)之現象,導致sp2鍵結含量增加,硬度楊氏模數與殘留應力下降的趨勢。碳膜中sp3鍵結含量、硬度、楊氏模數隨著膜厚的增加而增加,但其殘留應力卻隨著沈積時間增加導致極板溫度上升而下降。另一方面,非晶質矽中間層可有效善類鑽碳膜於SK6工具鋼以及氧化鋁剛玉(Al2O3 sapphire)上之附著狀況。對於矽基材而言,沈積在中間層上的類鑽碳膜,其sp2鍵結含量相對於無中間層之類鑽碳膜高,硬度與楊氏模數也有些微下降的趨勢;而中間層膜厚在20 nm到100 nm之間的變化,對類鑽碳膜的結構與性質影響小。
Diamond-like carbon (DLC) films were deposited by RF plasma enhanced chemical vapor deposition. The influence of deposition parameters, i.e. reactive gas, gas flow rate, working pressure, r.f. power, deposition time and amorphous silicon intermediate layer on microstructure as well as the mechanical properties were addressed. The microstructure and mechanical properties of the DLC film were successively measured by Raman spectroscopy, nanoindentation and phase-shifting Michelson interferometer. Further, the DLC films deposited on four different substrates (silicon wafer, glass, SK6 tool steel, Al2O3 sapphire) and amorphous silicon intermediate layer were investigated.
The results showed that all of the film sp3 content, hardness and Young’s modulus decrease with increasing gas flow rate while the supplied power and working pressure are fixed. On the other hand, the hardness and modulus of DLC films deposited by acetylene plasma are greater than those deposited by methane plasma. The residual stress decreases with increasing acetylene flow rate but no obvious changes were found with increasing methane flow rate. The sp3 content, hardness, Young’s modulus and residual stress decrease with increasing working pressure. The results of Raman spectrum indicate that carbon films deposited under 20 W have a microcrystalline graphite-like structure. The film sp3 content increases with increasing power under fixed flow rate and working pressure. The maximum values of hardness, modulus and residual stress of carbon films occur when the supplied is set to be 60 W. The higher ion energy under 80 W causes the thermal spike effect, which lead to the drop of sp3 content, hardness, modulus and residual stress. In addition, the adherence of DLC films on SK6 tool steel and Al2O3 sapphire was improved by amorphous silicon intermediate layer. For the Si substrate, we observed that the sp3 content, hardness and Young’s modulus of DLC films deposited with amorphous silicon intermediate layer are less than those of DLC films deposited without intermediate layer. However, the changes of intermediate layer thickness from 20 nm to 100 nm have no significant effect on microstructure and mechanical properties of DLC films.
中文摘要………………………………………………………………….…………….....I
英文摘要…………………………………………………………………….……………II
總目錄…………………………………………………….……………….……………..IV
圖目錄……………………………………………………..…………....……………...VIII
表目錄…………………………………………………...……………….……………..XII
第一章 緒論
1.1 前言……………………………………………………………….…………….1
1.2 研究目地………………………………………...…….……………….……….2
第二章 理論基礎與前人研究
2.1類鑽碳
2.1.1類鑽碳的原子結構與鍵結型態…………………………………….3
2.1.2類鑽碳的成膜機制…………………………………….....................5
2.2射頻電漿輔助化學氣相沈積碳膜的基本理論……………………….............10
2.3分析原理
2.3.1拉曼光譜………………………………..………………………….12
2.3.2奈米壓痕試驗原理
2.3.2.1負載對位移關係圖……………………..……………17
2.3.2.2連續剛性量測……………………...………………...18
2.3.3殘留應力
2.3.3.1類鑽碳膜的殘留應力……………..…………………21
2.3.3.2光學干涉技術量測類鑽碳膜曲率的基本理論……..22
2.4中間層、基材與膜厚效應………………………..…………………………….26
第三章 實驗流程與分析儀器
3.1實驗流程……………….……………………………………………....………28
3.2射頻電漿輔助化學氣相沈積系統…………………………...………………..29
3.3碳膜沈積條件及沈積步驟
3.3.1基材前處理…………………….…………………………………..30
3.3.2中間層沈積條件…………………………………………………...31
3.3.3類鑽碳膜沈積條件………………………………………………...31
3.4薄膜分析與儀器介紹
3.4.1表面粗糙度測定儀……………………………...............................32
3.4.2拉曼光譜分析儀…………………………………………………...32
3.4.3奈米壓痕量測系統………………………………………………...32
3.4.4薄膜殘留應力量測………………………………………………...33
第四章 結果與討論
4.1起始氣體與氣體流量的影響
4.1.1不同氣體流量下的自偏壓………………………………………...34
4.1.2不同氣體流量下的碳膜厚度……………………………………...34
4.1.3不同氣體流量下的鍵結型態……………………………………...35
4.1.4不同氣體流量下的表面硬度與楊氏模數………………………...35
4.1.5不同氣體流量下的殘留應力…………….………………………..36
4.2工作壓力的影響
4.2.1不同工作壓力下的自偏壓值……………………………………...44
4.2.2不同工作壓力下的碳膜厚度……………………………………...44
4.2.3不同工作壓力下的鍵結型態……………………………………...45
4.2.4不同工作壓力下的表面硬度與楊氏模數………………………...45
4.2.5不同工作壓力下的殘留應力…………………………….………..45
4.3電漿功率的影響
4.3.1不同電漿功率下的自偏壓………………………………………...53
4.3.2不同電漿功率下的碳膜厚度………………………………...……53
4.3.3不同電漿功率下的鍵結型態……………………………………...53
4.3.4不同電漿功率下的表面硬度與楊氏模數………………………...54
4.3.5不同電漿功率下的殘留應力……………………………………...54
4.4碳膜厚度的影響
4.4.1不同碳膜厚度下的鍵結型態……………………………………...63
4.4.2不同碳膜厚度下的表面硬度與楊氏模數………………………...63
4.4.3不同碳膜厚度下的殘留應力……………………………………...64
4.5非晶質矽中間層的影響
4.5.1不同厚度中間層的碳膜鍵結型態………………………………...71
4.5.2不同厚度中間層的碳膜表面硬度與楊氏模數…………………...71
4.6不同基材與非晶質矽中間層對類鑽碳膜的影響
4.6.1表面型貌觀察……………………………………………………...75
4.6.2類鑽碳膜的鍵結型態……………………………………………...75
4.6.3類鑽碳膜的表面硬度與楊氏模數…………………………….......75
第五章 結論……………………………………………………………………………..83
參考文獻………………………………………..………………………………………..85
Chinese abstract……….......………………………………….…………….....I
English abstract………………………………………...…………………….……………II
Tables of contents…...…………………………………….……………….……………..IV
List of figures…….……………………………….…………....……………...VIII
List of tables…………………………....……………………...…………..XIII
Cheaper 1 Introduction
1.1 Foreword………………………………………………………….…………….1
1.2 Motivations…….………………………………...…….……………….……….2
Chapter 2 Literature review
2.1 Diamond-like carbon
2.1.1 Atomic structure and bonding……..…………………………..…….3
2.1.2 Growth mode…………………………………….……......................5
2.2 The principle of radio frequency plasma enhanced
chemical vapor deposition..................................................................11
2.3 Characterization techniques
2.3.1 Raman spectroscopy………...…………..………………………….13
2.3.2 Nanoindentation
2.3.2.1 Loading-displacement curves…………...……………18
2.3.2.2 Continuous stiffness measurement…………………...19
2.3.3 Residual stress
2.3.3.1 The residual stress of DLC films..……………………22
2.3.3.2 The interference technique of
curvature measurement for DLC films…………….....23

2.4 Effects of intermediate layer, substrates and
film thickness……………………………………………………….………….27
Chapter 3 Experimental procedures and apparatus
3.1 Experimental procedures…………………………………….………....………29
3.2 The Radio frequency plasma enhanced chemical vapor deposition…………....30
3.3 Experimental procedures and deposition parameters
3.3.1 Pretreatment of substrates…………………………………...……..31
3.3.2 Deposition parameters of intermediate layer……………..………...32
3.3.3 Deposition parameters of DLC films……………………….……...32
3.4 Apparatus and measurement
3.4.1 Surface Profiler………………..........................................................33
3.4.2 Raman spectrum………………………………………….………...33
3.4.3 Nanoinsentation………………………..…………………………...33
3.4.4 Residual stress………………………....…………………………...34
Chapter 4 Results and discussion
4.1 Effect of reactive gas and gas flow rate
4.1.1 The self-bias under different gas flow rate………………………....35
4.1.2 The films thickness under different gas flow rate……………….....35
4.1.3 The structure under different gas flow rate………………………...36
4.1.4 The hardness and Young’s modulus
under different gas flow rate……………………………………......36
4.1.5 The residual stress under different gas flow rate……………….…..37
4.2 Effect of working pressure
4.2.1 The self-bias under different working pressure………………….....45
4.2.2 The films thickness under different working pressure………...…...45
4.2.3 The structure under different working pressure…………………....46
4.2.4 The hardness and Young’s modulus
under different working pressure…………………………………...46
4.2.5 The residual stress under different working pressure….…….……..46
4.3 Effect of power
4.3.1 The self-bias under different power……………………...………...54
4.3.2 The films thickness under different power……...……………….…54
4.3.3 The structure under different power………………………………..54
4.3.4 The hardness and Young’s modulus
under different power………………………………………….…...55
4.3.5 The residual stress under different power……………………..…...55
4.4 Effect of DLC films thickness
4.4.1 The structure under different DLC films thickness………………...64
4.4.2 The hardness and Young’s modulus
under different DLC films thickness…………………………….....64
4.4.3 The residual stress under different DLC films thickness………......64
4.5 Effect of amorphous silicon intermediate layer
4.5.1 The structure under different intermediate layer thickness………...72
4.5.2 The hardness and Young’s modulus
under different intermediate layer thickness………………….........72
4.6 Effect of different substrate
4.6.1 Surface morphology…………………………………………...…...76
4.6.2 Structure of DLC films……………………………………………..76
4.6.3 Mechanical properties of DLC films…….................................77
Chapter 5 Conclusions……………………………………..……………………………..84
References…………..…………………………..………………………………………..86
[1] Aisenberg S, Ronald S. Ion-beam deposition of thin films of diamondlike carbon. J Appl Phys 1971; 42(7):2953-8.
[2] Grill A. Diamond-like carbon: state of the art. Diamond Relate Mater 1999;8:428-34.
[3] Nalwa HS. Handbook of thin film materials. 2002;9:404-19.
[4] Martino CD, Demichelis F, Tagliaferro A. Determiniation of the sp3/sp2 ratio in a-C:H films by infrared spectrometry analysis. Diamond Relate Mater 1995;4:1210-5.
[5] Robertson J. Diamond-like amorphous carbon. Materials Science and Engineering R 2002;37:129-281.
[6] Robertson J. Structural models of a-C and a-C:H. Diamond Relate Mater 1995;4:297-301.
[7] Robertson J. Deposition mschanism of cubic boron nitride. Diamond Relate Mater 1996;5:519-24.
[8] Silva SRP, Xu S, Tay BK, Tan HS, Scheibe HJ, Chhowalla M, Milne WI. The structure of tetrahedral amorphous carbon thin films. Thin Solid Films 1996;290-1:317-22.
[9] Bundy FP, Bassett WA, Weathers MS, Hemley RJ, Mao HK, Goncharov AF. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 1996;34(2):141-53.
[10] Chen FF, Chang JP. Principle of plasma processing. 2002.
[11] Chapman B. Glow discharge process. John Wiley &Sons Inc.: United State of America 1980.
[12] Bhushan B. Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments. Diamond Relate Mater 1999;8:1985-2015.
[13] Voevodin AA, Donley MS. Preparation of amorphous diamond-like carbon by pulsed laser deposition: a critical review. Surf Coat Technol 1996;82:199-213.
[14] Bubert H, Jenett H. Surface and thin film analysis 2002.
[15] Ferrari AC. Determination of bonding in diamond-like carbon by Raman spectroscopy. Diamond Relate Mater 2002;11:1053-61.
[16] Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP. Raman spectroscopy on amorphous carbon films.J Appl Phys 1996;80(1):440-7.
[17] Bhushan B, Li X. A review of nanoindentation continuous stiffness measurement technique and its applicatipns. Materials characterization 2002;48:11-36
[18] Anthony CFC. Nanoindentation 2002.
[19] Bhushan B, Li X. Develop of continuous stiffness measurement technique for composite magnetic tapes. Scr Mater 2000;42:929– 35.
[20] Peng XL, Clyne TW. Mechanical stability of DLC films on metallic substrates: Part I-Film structure and residual stress levels. Thin Solid Films 1998;312:207-18.
[21] Peng XL, Barber ZH, Clyne TW. Surface roughness of diamond-like carbon films prepared using various techniques. Surf Coat Technol 2001;138:23-32.
[22] Alaluf M, Appelbaum J, Croitoru N. Properties of GaAs solar cells coated with diamondlike carbon films. Thin solid films 1998;320:159-62.
[23] Bursikova V, Sladek P, St’ahel P, Zajickova L. Improvement of the efficiency of the silicon solar cells by silicon incorporated diamond-like carbon antiflective coatings. J non-cryst solids 2002;299-302:1147-51.
[24] Alaluf M, Appelbaum J, Klibanov L, Brinker D, Scheiman D, Croitoru N. Amorphous diamond-like carbon films-a hard anti-reflecting coating for silicon solar cells. Thin solid films 1995;256:1-3.
[25] Yang WJ, Choa YH, Sekino T, Shim KB, Niihara K, Auh KH. Tribological evaluation of Si-O containing diamond-like carbon films. Surf Coat Technol 2003;162:183-8.
[26] Lifshitz Y. Hydrogen-free amorphous carbon films: correlation between growth conditions and properties. Diamond Relate Mater 1996;5:388-400.
[27] Lifshitz Y. Pitfalls in amorphous carbon studies. Diamond Relate Mater 2003;12:130-40.
[28] Tamor MA, Vassell W. Raman “fingerprinting” of amorphous carbon films. J Appl Phys 1994;76(6):3823-30.
[29] 陳元方,光機電系統整合概論.國家實驗研究院儀器科技研究中心 民94;8.3.3:459-63.
[30] Zang W, Tanaka A, Wazumi K, Koga Y. Structure, mechanical and tribological properties of diamond-like carbon films prepared under different substrate bias voltage. Diamond Relate Mater 2002;11:1837-44.
[31] Li X, Bhushan B. Evaluation of fracture toughness of ultra-thin film amorphous carbon coatings deposited by different deposition techniques. Thin Solid Films 1999;355-356:330-6.
[32] Peng XL, Clyne TW. Mechanical stability of DLC films on metallic substrates Part II — Interfacial toughness, debonding and blistering. Thin Solid Films 1998;312:219-27.
[33] Wang DY, Chang CL. Microstructure and adhesion characteristics of diamond-like carbon films deposited on steel substrates. Diamond Relate Mater 2001;10:1528-34.
[34] Butter R, Allen M, Chandra L, Lettington AH, Rushton N. In vitro studies of DLC coatings with silicon intermediate layer. Diamond Relate Mater 1995;4:857-61.
[35] Doner A, Schürer C, Resisel G, Irmer G, Seidel O, Müller E. Diamond-like carbon –coated Ti6Al4V: influence of the coating thickness on the structure and abrasive wear resistance. Wear 2001:249;489-97.
[36] Kodail P, Walter C, Nastasi M. Investigation of mechanical and tribological properties of amorphous diamond-like carbon coatings. Tribology international 1997;30(8):591-8.
[37] Chhowalla M, Robertson J, Chen CW, Silva SRP, Davis CA, Amaratunga GAJ, Milne WI. Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. J Appl Phys 1997;81(1):139-45.
[38] Ohring M. The Materials Science of Thin Films. Academic Press 1992
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top