跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃聖富
研究生(外文):Sheng-Fu Huang
論文名稱:使用鈷-鋁複合催化劑以化學氣相沉積法成長奈米碳纖維
論文名稱(外文):Synthesis of Carbon Nanofibers using a Co-Al Composite Catalyst by Chemical Vapor Deposition
指導教授:曾信雄曾信雄引用關係
指導教授(外文):Shinn-Shyong Tzeng
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:169
中文關鍵詞:煆燒Co-Al複合催化劑奈米碳纖維微結構
外文關鍵詞:calcinationCo-Al composite catalystcarbon nanofibers(CNFs)microstructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討以Feitknecht 化合物為前軀體製備Co-Al複合催化劑,以不同煆燒條件之催化劑經由化學氣相沉積法進行生長奈米碳纖維。研究結果顯示,不同的煆燒溫度及時間會影響奈米碳纖維之產率,以400℃進行4小時煆燒之催化劑可獲得最高之奈米碳纖維產率。針對不同煆燒條件之催化劑生長奈米碳纖維進行微結構分析,其奈米碳纖維之微結構並無隨著不同煆燒條件有所改變。
以最佳煆燒條件(400℃進行4小時煆燒)之複合催化劑進行不同製程參數,分別為通入碳源氣氛前進行還原與不還原處理之製程條件。經由還原處理之製程條件,適合生長奈米碳纖維之溫度範圍為500-700℃,隨著不同製程溫度變化分別可製備具錐形空孔(conical interval)、管狀(tubular) 微結構之奈米碳纖維。不經由還原處理之製程條件,適合生長奈米碳纖維之溫度範圍為600-800℃,隨著不同製程溫度變化分別可製備具錐形空孔、管狀微結構之奈米碳纖維。由還原處理與不經還原處理兩種方式所生長之奈米碳纖維的比較,實驗結果顯示僅影響奈米碳纖維的產率,其奈米碳纖維之微結構並無隨著還原處理與否而有所改變。
在添加不同氣氛(氬氣、氮氣、氫氣)混合甲烷之條件下,以純甲烷不經還原處理於700℃可製備具管狀結構之奈米碳纖維,添加氮氣後顯示與使用純甲烷所生長之奈米碳纖維的微結構有所不同,所生長之奈米碳纖維的微結構從管狀結構轉變為類竹節狀(bamboo-like)結構。以純甲烷不經還原處理於600℃可製備具錐形空孔結構之奈米碳纖維,當添加氮氣後顯示所生長之奈米碳纖維的微結構與利用純甲烷所生長有所不同,其微結構從錐形空孔結構轉變趨向管狀結構。
In this study, carbon nanofibers (CNFs) were grown by chemical vapor deposition (CVD) using a Co-Al composite catalyst derived from Feitknecht compound precursor. The experimental results showed that the highest yield of CNFs were obtained when the starting catalysts were calcined at 400℃ for 4 hours. The yield of CNFs were affected by the Co-Al composite catalyst with different calcination conditions, but no obvious change in the microstructure of CNFs were observed when using the catalyst with different calcination conditions.
Different synthetic parameters of CNFs were carried out by CVD over catalyst with calcination at 400℃ for 4 hours in air. Before purging carbon source gas, the synthetic parameters were carried out with reduction and non-reduction process. With reduction process, the CNFs were performed in the range of 500-700℃, and the CNFs with conical interval and tubular microstructure can be synthesized with different temperatures. Without reduction process, the CNFs were carried out in the range of 600-800℃, and the microstructure of CNFs with conical interval and tubular microstructure can be synthesized with different temperatures. For comparison between reduction and non-reduction process, the experimental results showed that the yield of CNFs was affected by reduction or non-reduction process, but no obvious change in the microstructure of CNFs was observed by reduction and non-reduction process.
The tubular microstructure of CNFs was synthesized at 700℃ from pure methane by non-reduction process. When hydrogen was added to methane, the CNFs with bamboo-like microstructure was synthesized at the same temperature. The CNFs with conical interval microstructure was synthesized at 600℃ from pure methane by non-reduction process. When nitrogen was added to methane, the CNFs with conical interval was tend to transform into tubular –like structure of CNF.
TABLES OF CONTENTS

ENGLISH ABSTRACT………………………………………………………………I
CHINESE ABSTRACT………………………………………………………………II
TABLE OF CONTENTS……………………………………………………………III
LIST OF FIGURES……………………………………………………………… V
LIST OF TABLES……………………………………………………………………X
CHAPTER
I. Introduction………………………………………………………………………1
II. Literature review………………………………………………………………4
2.1. Introduction of Carbon nanotubes and nanofibers………………4
2.2 Growth mechanism of carbon nanofibers…………………………………6
2.3 The choice of catalysts………………………………………………………8
2.4 Hydrotalcite (Feitknecht compound) ……………………………………9
2.5 Effect of decomposition temperature and gas on growth CNFs………11
III. Experimental………………………………………………………………………14
3.1 Preparation of catalysts…………………………………………………………14
3.2 The synthesis of CNFs by thermal CVD………………………………………14
3.2.1.With reduction process…………………………………………………………14
3.2.1.1 Catalyst with different calcination conditions…………………14
3.2.1.2 Synthesis of CNFs with reduction………………………………………15
3.2.2 Without reduction process……………………………………………………15
3.2.2.1 Synthesis of CNFs without reduction…………………………………15
3.2.2.2 Synthesis of CNFs with mixing different gases……………………15
3.3 Analyzer……………………………………………………………………………………16
3.3.1 XRD………………………………………………………………………………………16
3.3.2 TGA………………………………………………………………………………………16
3.3.3 FEG-SEM…………………………………………………………………………………17
3.3.4 HRTEM……………………………………………………………………………………17
3.3.5 RAMAN……………………………………………………………………………………17
3.3.6 EA…………………………………………………………………………………………17
IV. Results and Discussion………………………………………………………………20
4.1 Preparation of catalysts…………………………………………………………20
4.2 Synthesis of CNFs by CVD…………………………………………………………22
4.2.1 With reduction process…………………………………………………………23
4.2.1.1 Synthesis of CNFs using catalyst with different
calcination conditions………………………………………………………23
4.2.1.2 Synthesis of CNFs with reduction………………………………………32
4.2.2 Without reduction process……………………………………………………42
4.2.2.1 Synthesis of CNFs without reduction…………………………………42
4.2.2.2 Synthesis of CNFs with mixing different gases……………………52
4.2.3 Comparison with reduction and non-reduction process………………65
V. Conclusion…………………………………………………………………………………69
References………………………………………………………………………………………71
Reference
[1] Kroto HW, Heath JR, Obrien SC, curl RF, Smalley RE. C60:
Buckminsterfullerene. Nature1985; 318(6042):162-3.
[2] Iijima S.Helical microtubules of graphitic carbon. Nature 1991;
354:56-8.
[3] Lau KT, Hui D. The revolutionary creation of new advanced
materials-carbon nanotube composites. composites B 2002;33;263-
77.
[4] Nerushev OA, Sveningsson M, Falk LKL, Rohmund F. Carbon nanotube
film obtained by thermal chemical vapour deposition. J Mat Chem
2001;11:1122-32.
[5] Dresselhaus MS, Dresselhaus G, Saito R. Physics of carbon
nanotubes. Carbon 1995;33(7):883-91.
[6] Wang PL. Synthesis of carbon nanofibers with specific
microstructures by a Ni/Al2O3 Composite catalyst. Tatung
University , PhD thesis, 2005.
[7] Baker RTK. Electron Microscopy Studies of The Catalytic Growth
of Carbon filaments, Carbon Fiber Filaments and Composites,
NATO ASI Series E, Applied sciences vol 177.
[8] Tibbetts GG. Physical modeling of carbon filament growth. In:
Figueiredo JL, Bernardo CA, Baker RTK, Huttiner KJ, eds. Carbon
Fiber Filaments and Composites 1990;525.
[9] Baker RTK. Catalytic growth of carbon filaments. Carbon
1989 ;27: 315-22.
[10] Shaikhutdinov SK, Avdeeva LB, Goncharova OV, Kochubey DI,
Novgorodov BN, Plyasova LM. Coprecipitated Ni-Al and Ni-Cu-Al
catalysts for methane decomposition and carbon deposition I.
Genesis of calcined and reduced catalysts. Appl Catal A
1995;126:125-139.
[11] Avdeeva L B, Goncharova OV, Kochubey DI, Zaikovskii VI, Plyasova
LM, Novgorodov BN, Shaikhutdinov SK. Coprecipitated Ni-alumina
and Ni-Cu-alumina catalysts of methane decomposition and carbon
deposition. II. Evolution of the catalysts in reaction. Appl
Catal A 1996;141:117-129.
[12] Reshetenko TV, Avdeeva LB, Ismagilov ZR, Pushkarev VV,
Cherepanova SV, Chuvilin AL, et al. Catalytic filamentous carbon
Structural and textural properties. Carbon 2003;41:1605-15.
[13] Bravo-Suarez JJ, Paez-Mozo EA, Oyama ST. Models for the
estimation of thermodynamic properties of layered double
hydroxides: application to the study of their anion exchange
characteristics. Quim Nova 2004;27:574-581.
[14] Feitknecht W, Gerber M. Helv Chim Acta 1942;25:131.
[15] Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic
clays : Preparation, properties and applications. Catal Today
1991;11:173-301.
[16] Rudolf A . The Crystal Structure of Pyroaurite .Acta Cryst Sect
B,1968;39:972-7.
[17] Taylor H F W.Crystal structures of some double hydroxide
minerals. Miner Mag 1973;39(304):377-89.
[18] Pérez-Ramírez J, Mul G, Moulijn JA. In situ Fourier transform
infrared and laser Raman spectroscopic study of the thermal
decomposition of Co-Al and Ni-Al hydrotalcites. Vib Spec
2001;27:75-88.
[19] Perez-Ramirez J, Mul G, Kapteijn F,Moulijn JA. In situ
investigation of the thermal decomposition of Co-Al hydrotalcite
in different atmospheres. J Mat Chem 2001;11:821-30.
[20] Arnoldy P, Moulijn JA. Temperature-programmed reduction of
CoO/Al2O3 catalysts. J Cat 1985;93:38-54.
[21] Avdeeva LB, kochubey DI, Shaikhutdinov SK. Cobalt catalysts of
methane decomposition: accumulation of the filamentous carbon.
App cat A1999;177:43-51.
[22] Thaib A, Martin GA, Pinheiro P, Schouler MC, Gadelle P.
Formation of carbon nanotubes from the carbon monoxide
disproportionation reaction Co/Al2O3 and Co/SiO2 catalysts. Cat
lett 19999;63:135-41.
[23] Pinheiro P, Schouler MC, Gadelle P, Mermoux M, Dooryhée E.
Effect of hydrogen on the orientation of carbon layers in
deposits from the carbon monoxide disproportionation reaction
over Co/Al2O3 catalysts. Carbon 2000;38:1469-79.
[24] Pinheiro P, Schouler MC, Dooryhée E. In situ X-ray diffraction
study of carbon nanotubes and filaments during their formation
over Co/Al2O3 catalysts. Solid State Communications 2002;123:161- 66.
[25] Wu X B ,Chen P , Lin J , Tan K L .Hydrogen uptake by carbon
nanotubes. Inter J Hydro Energy 2000,25:261.
[26] Pinheiro JP, Schouler MC, Gadelle P. Nanotubes and nanofilaments
from carbon monoxide disproportionation over Co/MgO catalysts I
Growth versus catalyst state. Carbon 2003;41:2949-59.
[27] Teo KBK, Singh C, Chhowalla M, Milne WI. Catalytic synthesis if
carbon nanotubes and nanofibers. Encyc Nanosci Nanotech; X:1-22.
[28] Li WZ, Wen JG, Ren ZF. Effect of temperature on growth and
structure of carbon nanotubes by chemical vapor deposition. Appl
Phys A 2002;74:397-402.
[29] Nolan PE, Schabel MJ, Lynch DC. Hydrogen control of carbon
deposit morphology. Carbon 1995;33:79-85.
[30] Nolan PE, Lynch DC, Cutler AH. Carbon deposition and hydrocarbon
formation on group Ⅷ metal catalysts. J Phys Chem B
1998,102:4165-75
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top