跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/05 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹育碩
研究生(外文):Yu-Shuo Chan
論文名稱:單、雙相鋅-鋁合金之加工軟化與退火硬化研究
論文名稱(外文):A Study on the Strain Softening and Anneal Hardening in Pseudo-single- and Dual-phase Zn-Al Alloys
指導教授:楊智富楊智富引用關係
指導教授(外文):Chih-Fu Yang
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:143
中文關鍵詞:鋅鋁合金加工軟化退火硬化動態再結晶
外文關鍵詞:Zn-Al alloywork softeninganneal hardeningdynamic recrystallization (DRX)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用熱機處理來製備具不同預應變之三種鋅鋁合金,包括微雙相鋅-22 wt.% 鋁及擬單相之鋅-95 wt.% 鋁(α相)與鋅-1 wt.% 鋁(β相),探討其是否及如何發生加工軟化行為與退火硬化行為。藉由示差掃瞄熱卡計(DSC) 、微硬度、及壓縮測試,並且配合掃瞄式電子顯微鏡(SEM)微觀組織之觀察,探討三種合金內之α相與β相之微觀結構與加工軟化及退火硬化的關係。研究結果顯示,在-10℃至250℃之溫度區間含大量β相之鋅鋁合金會出現加工軟化之現象,而軟化後之鋅鋁合金在後續高溫退火時會出現退火硬化之現象。由實驗結果分析得知,加工軟化之機構乃是熱加工時之動態再結晶(DRX)所導致之軟化行為,而具備高角度晶界之極細β相晶粒可促進動態再結晶,而加強加工軟化之效果。另一方面,退火硬化之機構則是藉由退火來粗化這些極細β相晶粒,阻礙動態再結晶所導致之軟化,回復材料正常強度。
為進一步驗證加工軟化與退火硬化對鋅鋁合金之應力-應變行為,本研究針對壓縮實驗所得結果提出一「複合應力-應變圖形」模型來解析鋅-22 wt.% 鋁合金內所發生之結構變化,對應於此「複合應力-應變圖形」,鋅鋁合金內β相所發生之塑性變形行為、動態再結晶(應變軟化)行為與粗化(退火硬化)均得以清楚辨別。
In this study thermomechanical processings were applied to three Zn-Al alloys, namely the micro-duplex Zn-22 wt.% Al alloy, pseudo-single α phase Zn-95 wt.% Al and pseudo-single β phase Zn-1wt.% Al for the strain softening and anneal hardening studies. The microstructure, hardness and compression S-S curves of these Zn-Al alloys were studied by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), microhardness measurements and compression tester. The results showed the occurrence of a strain softening phenomenon in Zn-Al alloys containing a substantial amount of β phase in the temperature range from -10℃ to 250℃ and an anneal hardening behavior in the strain softened Zn-Al alloys upon high temperature annealing. The mechanism of the strain softening behavior was found to be a DRX-induced softening during hot working, which can be facilitated by the formation of ultra-fine β grains with high-angle-boundaries; the mechanism of the anneal hardening behavior, on the other hand, was found to be the annihilation of the ultra-fine β grains by a high temperature grain coarsening treatment to retard the occurrence of the DRX-induced softening and to restore the “normal strength” of the alloy.
A composite stress-strain curve model was proposed in this study to resolve the strain softening and anneal hardening behaviors in the dual-phase Zn-22 wt.% Al alloy. By using this model detailed informations regarding to the deformation, the DRX (i.e. the strain softening) and the grain coarsening (i.e. the anneal hardening) behaviors in the β phase can be disclosed.
TABLE OF CONTENT
CHINESE ABSTRACT i
ENGLISH ABSTRACT iii
TABLE OF CONTENT v
LIST OF TABLE vii
LIST OF FIGURES viii

CHAPTER
Ⅰ. INTRODUCTION 1

Ⅱ. LITERATURE REVIEW. 3
2.1 Hot working of metals 3
2.2 Dynamic recovery and dynamic recrystallization under hot working conditions …………………………………………………………..6
2.2.1 Dynamic recovery………...………….………………………..7
2.2.2 Dynamic recrystallization……………….………………….....9
2.3 Factors affecting the elevated temperature mechanical behaviors….
…………….…………………….…………………..…………....13
2.3.1 Zener-Hollomon parameter………………………………….16
2.3.2 Initial grain size……………………………………………...18
2.4 Introduction of superplasticity…...……………….……………...19
2.4.1 Mechanical Aspects of superplasticity……………………....20
2.4.2 Requirements for superplasticity…………………………….22
2.4.2.1 Fine grain size………………………………………..….23
2.4.2.2 Presence of second phase ……………………………....24
2.4.2.3 Nature of grain boundary structure……………………..25
2.4.2.4 Shape of grains…………………….…………………....26
2.4.2.5 Mobility of grain boundaries………………...…………26
2.4.2.6 Grain boundaries and their resistance to tensile separation……………….…………………………….26
2.4.3 Superplasticity in Zn-22 wt.% Al...………………………….27
2.4.4 Grain growth of Zn-Al alloys during superplastic deformation…………………….…………………………..28
2.4.5 Monotectoid transformation of Zn-22 wt.% Al alloy………..29

Ⅲ. EXPERIMENTAL PROCEDURES 31
3.1 Materials preparation 31
3.2 Thermomechanical treatment 32
3.3 Microstructure and properties examination………………….…...33
3.3.1 Microstructural examination…………………………………33
3.3.2 Differential scanning calorimeter measurement 33
3.3.3 Microhardness……………………………………………….34
3.3.4 Compression test …………………………………………… 35

Ⅳ. RESULTS AND DISCUSSION 36
4.1 DSC measurement. 36
4.2 Microstructure developement 37
4.2.1 The precipitation and coarsening 37
4.2.2 Pre-straining…………..………....……….…………….......40
4.2.3 Post-annealing treatment………....……….……………......42
4.3 Hardness test……………………………………………….……..43
4.4 Mechanisms of strain softening and anneal hardening in dual-phase and pseudo-single β phase Zn-Al alloys………………..46
4.5 Compression test………………………..……………….………..48
4.5.1 Compression test at room temperature..…..……….….….. .48
4.5.2 Compression test at 250℃.……...............……...........……52
4.6 Construction of S-S curve of dual-phase Zn-22 wt.% Al........59

Ⅴ. CONCLUTIONS 62
REFERENCES 64



LIST OF TABLE

Table 2.1 Typical superplastic materials 71
Table 2.2 Summary of proposed models of grain boundary sliding…....72
Table 3.1 Chemical compositions of the (a) Zn-22 wt.% Al, (b) Zn-95 wt.% Al, and (b) Zn-1 wt.% Al alloys………………………73
Table 4.1 Illustration of the influences of temperature, strain rate and grain size on the elevated temperature S-S curve…………...74
Table 4.2 Analysis of the on-set strain to initiate anneal hardening, εon-set, in compressive S-S curve of Zn-22 wt.% Al alloy at 250℃. 75



























LIST OF FIGURES

Fig. 2.1 Schematic of two deformation process extensively used for hot working of metals and their alloys. (a) In extrusion, the reduction in area is accomplished by a ram forcing the material through the die. (b) In rolling, this is accomplished by drawing the material between two rotating rolls that supply the necessary force for the reduction in thickness………………………………….………76
Fig. 2.2 Schematic of microstructural changes possible during hot working. In (a), dynamic recovery occurs during forming, and this is followed by static recovery subsequent to the shape change. If only recovery takes place, the grains change shape commensurately with the macroscopic shape change. In (b) the grains recrystallize after deformation is effected (static recrystallization). In (c) dynamic recrystallization (i.e., recrystallization during deformation ) take place and this is followed by static recrystallization 77
Fig. 2.3 Schematic of the true stress-true strain behavior of a material undergoing dynamic recovery. The flow stress rises to a steady-state value-which increases with increases in temperature-when a steady-state substructure is developed …...78
Fig. 2.4 (a) Schematic of the true stress-true strain-behavior of a material
undergoing dynamic recrstallization. (b) True stress-true strain
relationships for an Fe-0.25 wt.% C steel during hot working at
1373 K…………………………………….....…………..…….79
Fig. 2.5 Strain rate-strain behavior for a materials creeping at a low (lower curve) and a high (upper curve) stress. At low stresses, the strain rate decreases with time (strain) to the steady-state value dictated by the substructure developed. At the high stress level, the substructure developed initiates recrystalization and an oscillatory strain rate-strain behavior results; the strain rate is a maximum just after recrystallization and a minimum subsequent to the initiation of recrystallization 80
Fig. 2.6 (a) An oscillatory stress-strain curve is obtained during dynamic recrystallization when the strain (εc) required to initiate recrystallization is greater than the strain required to completely recrystallize the material. The strain cycle for the “first” wave, εs, is the sum of εc and εx. (b) Nonoscillatory behavior is observed when εx> εc and the steady-state flow stress is obtained at εs (= εx+ εc) 81
Fig. 2.7 The variation of εc and εx with stress. At low stresses, εc> εx and periodic dynamic recrystallization is found, and vice versa. The data are appropriate for Ni at 1210 K 82
Fig. 2.8 Influence of temperature on the compression flow curves
determined at a strain rate of 2×10-3 s-1 on OFHC copper.…………………………………………………..……...83
Fig. 2.9 Effect of initial grain size on hot compression flow curves for OFHC copper, deformed at 775 K and a strain rate of 2×10-3 s-1…………………………………………………...…………84
Fig. 2.10 Effect of strain rate on hot compression flow curves for Cu- 1.91 wt. % Be alloy at a temperature of 1073 K 85
Fig. 2.11 Schematic illustration of the logarithmic plot of stress
versus strain rate of superplastic materials………...………....86
Fig. 2.12 The tensile ductility of natural aged Zn-Al alloys at various Zn content……………………………………………………….87
Fig. 2.13 The phase diagram of Al-Zn system………………………….88
Fig. 2.14 TTT diagram of Zn-22 wt.% Al alloy………………………...89
Fig. 2.15 Influence of temperature on the compression flow curves..….90
Fig. 2.16 Coupled microstructural evolution and stress–strain flow curve for the HY-100 steel deformed at 1100℃ under a strain rate of 0.01 s-1.………………………………………………...…..…..91
Fig. 3.1 Flow chart showing the experimental procedures.…………….92
Fig. 3.2 Variable-speed roller…………………………………………...93
Fig. 3.3 JEOL 5600 scanning electron microscope……………………..94
Fig 3.4 TA 2910 DSC……………...……………………………………95
Fig. 3.5 Future-Tech FM-7 Vickers microhardness tester………………96
Fig. 3.6 Hung-Ta HT 8150 materials test system with an reverse-tension type compression apparatus.…………………..……………….97
Fig. 4.1 DSC curves of a cold worked (a) Zn-95 wt.% Al (α phase), (b) Zn-1 wt.% Al (β phase), and (c) Zn-22 wt.% Al (dual-phase) alloys.…………………………………………………………..98
Fig. 4.2 Microstructures of Zn-22 wt.% Al; (a) as-cast, (b) homogenized at 380℃ for 48 hours, (c) hot rolled at 380 ℃ and air cooled, (d) solution treated, quenched and aged in -10℃ coolant for 24 h, (e) grain coarsened at 200℃ for 24 h. Microstructures of the (f) pseudo-single α phase Zn-95 wt.% Al and (g) pseudo-single β phase Zn-1 wt.% Al alloys subjected to exactly the same thermomechanical processing as that of Zn-22 wt.% Al alloy.. 99
Fig. 4.3 Microstructural evolution in Zn-22 wt.% Al alloys, mechanical rolled at -10℃; (a) and (b) prior to pre-strained, (c) and (d) 30% pre-strained, (e) and (f) 60% pre-straining...…………………101
Fig. 4.4 Microstructures in Zn-95 wt.% Al: (a) un-pre-strained, (b) 30% pre-strained and (c) 60% pre-strained; microstructures of Zn-1 wt.% Al: (d) un-pre-strained, (b) 30% pre-strained and (c) 60% pre-strained.…………………………………………………..102
Fig. 4.5 Microstructure changes in 60% pre-strained Zn-Al alloys by a post-annealing treatment at 250℃ for 1440 mins; (a) before and (b) after post-annealing of pseudo-single α phase Zn-95 wt.% Al; (c) before and (d) after post-annealing of pseudo-single β phase Zn-1 wt.% Al; (e) before and (f) after post-annealing of dual-phase Zn-22 wt.% Al.…………………………………...103
Fig. 4.6 Variation in hardness of Zn-95 wt.% Al, Zn-22 wt.% Al, and Zn-1 wt.% Al alloys with the amount of mechanical rolling..……………..………………………………………...104
Fig. 4.7 Effect of post-annealing at room temperature on the hardness of Zn-Al alloys pre-strained at -10℃ to reductions in thickness (a) 30% and (b) 60%..…………………………………...…….105
Fig. 4.8 Effect of post-annealing at 250℃ on the hardness of Zn-Al alloy specimens pre-strained at -10℃ to reductions in thickness (a) 30% and (b) 60%..………………………………………106
Fig. 4.9 Compressive flow curves of Zn-22 wt.% Al alloy tested at room temperature under initial strain rates of (a) 1×10-2 s-1 and (b) 1×10-3 s-1..….…………………………………………………107
Fig. 4.10 Microstructural evolution in an un-pre-strained Zn-22 wt. % Al alloy during compression test at room temperature under an initial strain rate of 1×10-3 s-1 to true strain of (a) 0, (b) 0.75, (c) 1.25, and (d) 2. A higher magnification of (d) is shown in (e)..….……..….…………………..….….……….….……..108
Fig. 4.11 After compression microstructure of Zn-22 wt.% Al alloy specimens, compression tested at room temperature to a true strain of 2: (a) and (b) un-pre-strained specimens tested under initial strain rates of 1×10-2 s-1 and 1×10-3 s-1; (c) and (d) 30% pre-strained specimens tested under initial strain rates of 1×10-2 s-1 and 1×10-3 s-1; (e) and (f) 60% pre-strained specimens tested under initial strain rates of 1×10-2 s-1 and 1×10-3 s-1…............109
Fig. 4.12 Compressive flow curves of (a) Zn-95 wt.% Al and (b) Zn-1 wt.% Al alloys at room temperature under an initial strain rate of 1×10-3 s-1..…………………………………...……………..110
Fig. 4.13 Microstructural evolution in an un-pre-strained Zn-95 wt. % Al alloy during compression test at room temperature under an initial strain rate of 1×10-3 s-1 to true strains of (a) 0, (b) 0.75, (c) 1.25, and (d) 2...……………………………………………...111
Fig. 4.14 Microstructural evolution in an un-pre-strained Zn-1 wt. % Al alloy during compression test at room temperature under an initial strain rate of 1×10-3 s-1 to true strains of (a) 0, (b) 0.75, (c) 1.25, and (d) 2.…………………………………………….....112
Fig. 4.15 After compression test (at room temperature under an initial strain rate of of 1×10-3 s-1) microstructures of (a) un-pre-strained Zn-95 wt.% Al alloy, (b) un-pre-strained Zn-1wt. % Al alloy, (c) 30% pre-strained Zn-95 wt.% Al alloy, (d) 30% pre-strained Zn-1wt. % Al alloy, (e) 60% pre-strained Zn-95 wt.% Al alloy and (f) 60% pre-strained Zn-1 wt.% Al alloy..……….………. .…..……….……………….………113
Fig. 4.16 Compressive flow curves of Zn-22wt.% Al at 250℃ under initial strain rates of 1×10-2 s-1 and 1×10-3 s-1...………………114
Fig. 4.17 (a) Specimen geometry for compression test, (b) cross-sections A and B of compressed specimen for microstructure examination………………………………………...…....…...115
Fig. 4.18 Microstructural evolution in un-pre-strained Zn-22 wt. % Al alloy on cross-section A; compression tested at 250℃ under an initial strain rate of 1×10-3 s-1 to true strains of (a) 0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5, (g) 0.6, (h) 0.7 and (i) 1.0. The arrows mark the direction of compression..………………….116
Fig. 4.19 Microstructural evolution in un-pre-strained Zn-22 wt. % Al alloy on cross-section B﹔compression tested at 250℃ under an initial strain rate of 1×10-3 s-1 to true strains of (a) 0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5, (g) 0.6, (h) 0.7 and (i) 1.0. The arrows mark the direction of compression..………………….118
Fig. 4.20 Microstructures in un-pre-strained Zn-22 wt.% Al alloy specimens; (a) before compressive test, (b) compression strained to true strain of 1 at 250℃ under a strain rate of 1 × 10-3 s-1…120
Fig. 4.21 Effect of the pre-strain on the compressive flow curve of Zn-22 wt.% Al alloy tested at 250℃ under initial strain rates of (a) 1×10-2 s-1 and (b) 1×10-3 s-1.……..……………………………121
Fig. 4.22 Microstructure of Zn-22 wt.% Al alloy specimens, compression tested at 250℃ to a true strain of 1: (a) and (b) un-pre-strained specimens under initial strain rates of 1×10-2 s-1 and 1×10-3 s-1; (c) and (d) 30% pre-strained under initial strain rates of 1×10-2 s-1 and 1×10-3 s-1; (e) and (f) 60% pre-strained under initial strain rates of 1×10-2 s-1 and 1×10-3 s-1….….…………….…………122
Fig. 4.23 Compressive flow curves of (a) Zn-95 wt.% Al and (b) Zn-1 wt.% Al alloys at 250℃ under initial strain rate 1×10-3 s-1.....123
Fig. 4.24 After compression test (at 250℃ under an initial strain rate of of 1×10-3 s-1) microstructures of (a) un-pre-strained Zn-95 wt.% Al alloy, (b) un-pre-strained Zn-1wt. % Al alloy, (c) 30% pre-strained Zn-95 wt.% Al alloy, (d) 30% pre-strained Zn-1wt. % Al alloy, (e) 60% pre-strained Zn-95 wt.% Al alloy and (f) 60% pre-strained Zn-1 wt.% Al alloy. ………..….………….124
Fig. 4.25 Microstructural evolution in an un-pre-strained Zn-1 wt. % Al alloy during compression test at 250℃ under an initial strain rate of 1×10-3 s-1 to true strains of (a) 0, (b) 0.05, (c) 0.75, (d) 1.25, and (e) 2. …..…………………………….…………..125
Fig. 4.26 Schematic diagram showing the construction of composite S-S curve in (a) 30% and (b) 60% pre-strained Zn-22 wt. % Al specimens tested at 250℃ under a low initial strain rate condition (1×10-3 s-1) by the overlap of (i) an oscillatory type flow pattern due to DRX in β phase and (ii) a deferred strain hardening flow pattern due to grain coarsening to from (iii) a composite S-S curve.………………………….……………126
Fig. 4.27 Schematic diagram showing the construction of composite S-S curve in (a) 30% and (b) 60% pre-strained Zn-22 wt. % Al specimens tested at 250℃ under a high initial strain rate condition (1×10-2 s-1) by the overlap of (i) an oscillatory type flow pattern due to DRX in β phase and (ii) a deferred strain hardening flow pattern due to grain coarsening to from (iii) a composite S-S curve. ………………….………………….127
[1] G. Rai. And N. J. Grent, Metall. Trans. A Vol. 6A (1975), pp.
385
[2] Courtney, Mechanical behavior of materials, pp. 310-316
[3] D. Matsuki. and M. Yamada, J. Japan Inst. Metals Vol.37 (1973), pp. 448
[4] C. E. Pearson, J. Inst. Metals Vol. 54 (1934), pp. 111
[5] S. A. Shei. and T. G. Langton, J. Mater. Sci. Vol. 13 (1978), pp. 1084
[6] G. L. Dunlop and D. M. R. Taplin, J. Mater. Sci. Vol. 7 (1972), pp. 84
[7] D. Lee, Acta. Met. Vol. 17 (1969), pp. 1057
[8] W. A. Backofen, F. J. Azzarto, G. S. Murty, and S. W. Zehr, Ductility, American Society for Metals, Metals Park, OH, (1968), pp. 279-310
[9] P. Chaudhari and S. Mader, High Speed Testing, Interscience, New York, NY, Vol. VII, (1969), pp. 1-17
[10] M. M. I. Ahmed and T. G. Langton, Metall. Trans. A Vol. 8A (1977), pp. 1832
[11] D. Lee. And W. A. Bacdafen, Trans. TMS-AIME Vol. 239 (1967), pp. 1034
[12] H. Ishikawa, F. A. Mohaned, and T. G. Langton, Phil. Mag. Vol. 32 (1975), pp. 1269
[13] K. A. Padmanabhan and G. J. Davies, Superplasticity, Springer, Berlin, (1980)
[14] O. D. Sherby and J. Wadsworth, Progress Mater. Sci., 33 (1989) pp. 169
[15] J. Pilling and N. Ridley, Superplasticity in Crystalline Solids, (1989), pp. 9-15
[16] B. Baudelet, Mster. Sci. Eng., A137 (1991), pp. 41
[17] V. N. Perevezenstsev, V. V. Rybin and V. N. Churil’deev, Acta Metall., Vol. 40 (1992), pp. 887
[18] R. S. Mishra and A. K. Mukherjee, Scripta Metall. Mater., Vol. 25 (1991), pp. 271-275
[19] F. R. N. Nabarro, Physical Society, London, (1948), pp. 75
[20]C. Herring, J. Appl. Phys., Vol. 21 (1950), pp. 437
[21] R. L. Coble, J. Appl. Phys., Vol. 34 (1963), pp. 1679
[22] B. K. Prasad, Mater. Trans., JIM, Vol. 39 (1998), No. 3, pp. 387
[23] M. G. Zelin and A. K. Mukherjee, Materials Science and Engineering, A208, pp. 210 (1996)
[24] Anthony Ball, Materials Science and Engineering, A234-A236 (1997), pp. 365
[25] J. A. Hines and K. S. Vecchio, Acta Mater., Vol. 45 (1997), No. 2, pp. 635
[26] O. A. Kaibyshev, A. I. Pshenichniuk and V. V. Astanin, Acta Mater., Vol. 46 (1998), No. 14, pp. 4911
[27] P. Dang and N. Chandra, Acta Mater., Vol. 46 (1998), No. 8, pp. 2851
[28] Metals Handbook:Properties and Selection: Nonferrous Alloys and Pure Metals, Vol. 2 (ASM, Metals Park, OH, USA, 1979), pp. 629-637
[29] E. Gervais, H. Levert and M. Bees, Trans. Am. Foundr. Soc., Vol. 88 (1980), pp. 183-194
[30] E. E. Underwood, Jour. Metals, 14, 914 (1962).
[31] Eric A Brandes, Smithells Metals Reference Book (2), pp.11-57.
[32] E. W. Smith and G. A. Hare, J. of The Institute of Metal Vol. 101, pp. 320-328 (1973).
[33] Valiev RZ, Korznikov AV, Mulyukov RR. Mater Sci Eng 1993;A168:141.
[34] Valiev RZ, Alexandrov IV, Islamgaliev RK. In: Chow GM, Noskova NI, editors. Nanocrystalline materials: science and technology. Nato ASI. Dordrecht: Kluwer Academic Publishers, 1998. p. 121.
[35] Valiev RZ, Kaibyshev OA, Kuznetsov RI, Musalimov RSh, Tsenev NK. DAN SSSR 1988;301(4):864.
[36] Valiev RZ, Krasilnikov NA, Tsenev NK. Mater Sci Eng 1991;A137:35.
[37] Valiev RZ, Islamgaliev RK. Superplasticity and superplastic forming. In: Ghosh AK, Bieler, TR, editors. The Minerals, Metals and Materials Society, 1998, p.117.
[38] Valiev RZ, Islamgaliev RK. Fiz Met Metalloved 1998;85:161.
[39] Valiev RZ. Nanostructured Mater 1995;6:73.
[40] Smirnova NA, Levit VI, Pilyugin VI, Kuznetsov RI, Davydova LS, Sazonova VA. Fiz Met Metalloved 1986;61:1170.
[41] Smirnova NA, Levit VI, Pilyugin VI, Kuznetsov RI, Degtyarov MV. Fiz Met Metalloved 1986;62:566.
[42] Smirnova NA, Levit VI, Degtyarov MV. Fiz Met Metalloved (1988);65:1027.
[43] Valiev RZ, Ivanisenko YuV, Rauch EF, Baudelet B. Acta Mater (1997);44:4705.
[44] Valiev RZ. Synthesis and processing of nanocrystalline powder. In: David L. Bourell, editors. The Minerals, Metals and Materials Society, (1996), p.153.
[45] Alexandrov IV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ. Nanostructured Mater (1998);10:49.
[46] Alexandrov IV, Zhu Y, Lowe T, Islamgaliev RK, Valiev RZ. Metall Mater Trans (1998);29A:2253.
[47] Segal VM, Reznikov VI, Drobyshevkij AE, Kopylov VI. Metally (1981);1:115.
[48] Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG. Scripta Mater (1996);35:143.
[49] Segal VM. Mater Sci Eng (1995); A197:157.
[50] Segal VM, Reznikov VI, Kopylov VI, Pavlik DA, Malyshev VF. In: Processes of plastic trans-formation of metals. Minsk: Navuka i Teknika, (1984). p. 295.
[51] Iwahashi Y, Horita Z, Nemoto M, Langdon TG. Acta Mater (1998); 46:1589.
[52] Ferrase S, Segal VM, Hartwig KT, Goforth RE. Metall Mater Trans (1997);28A:1047.
[53] Iwahashi Y, Horita Z, Nemoto M, Langdon TG. Acta Mater (1997); 45:4733.
[54] Ahmadeev NH, Valiev RZ, Kopylov VI, Mulyukov RR. Russian Metally (1992); 5:96.
[55] Valiahmetov OR, Galeyev RM, Salishchev GA. Fiz Metall Metalloved (1990);10:204.
[56] Galeev RM, Valiahmetov OR, Salishchev GA. Russian Metally (1990);4:97.
[57] Imayev RM, Imayev VM, Salishchev GA. J Mater Sci (1992);27:4465.
[58] Salishchev GA, Valiakhmetov OR, Galeyev RM. J Mater Sci (1993);28:2898.
[59] Kaibyshev O, Kaibyshev R, Salishchev G. Mater Sci Forum (1993);113-115:423.
[60] Valitov VA, Salishchev GA, Muhtarov Sh H. Russian Metally (1994);3:127.
[61] Salishchev GA, Valiakhmetov OR, Valitov VA, Muktarov SK. Mater Sci Forum (1994);170-172:121.
[62] Salishchev GA, Valiahmetov OR, Galeev RM, Malysheva SP. Russian Metally (1996);4:86.
[63] Kuhn. H. A.,“Workability in Hot and Cold Deformation Processes.”Firmability, Analysis Modeling, and Experimentation, S. S. Hecker, A. K. Ghosh, and H. L. Gegel, Eds.,published by the Metallurgical Society of the AIME, New York, (1978), pp.259-280.
[64] Papirno, R., Mescall, J., and Hansen, A., “Fracture in Axial Compression Tests of Cylinders,” Compression Testing of Homogeneous Materials and Composites, ASTM STP 808, American Society for testing and Materials, (1993), pp. 40-63.
[65] Wilkins, M. L.,“Caculation of Elastic-Plastic Flow,” Report UCRL-7322, Revision 1, Lawrence Livermore Laboratories, Livermore, Calif., (1969).
[66] Bluhm, J. I. and Morrissey, R. J.,“Fracture in Tensile Specimen,” International Conference on Fracture, Vol. 3, Japanese Society For Strength and Fracture of Materials, Sendai, Japan, (1965), pp. 1739-1780.
[67] Chait, R.,“Factors Influencing the Strength Differential of High Strength Steels,” Metallurgical Transactions, Vol. 3, No. 2, Feb. (1972), p. 365.
[68] Bridgeman, P. W., Studies in Large Plastic Flow and Fracture, McGraw Hill, New York, (1952), pp. 74-80.
[69] J. J. Jonas, C. M. Sellar and W. J. Mc. G. Tegart, Metall. Rev., 130, 1(1969).
[70] T. Sakai and J. J. Jonas, Acta Metall., 32, 189(1984).
[71] M. G. Akben, I. Weiss and J. J. Jonas, Acta Metall., 29, 111(1981).
[72] M. G. Akben, B. Bacroix and J. J. Jonas, Acta Metall., 29, 111(1981).
[73] S. P. Timothy, Acta Metall., 35, 301(1987).
[74] L. Blaz, T. Sakai and J. J. Jonas, Mater. Sci., 17, 609(1983).
[75] C. Roucoules, S. Yue, J.J. Jonas, Metall. Mater. Trans. A26 (1995) 181.
[76] A. Laasraoui, J.J. Jonas, Metall. Trans. A22 (1991) 151.
[77] C.M. Sellars, Mater. Sci. Technol. 6 (1990) 1072.
[78] C. Roucoules, P.D. Hodgson, S. Yue, J.J. Jonas, Metall. Mater. Trans. A25 (1994) 389.
[79] C. Rossard and P. Blain: Mem Etud. Sci. Rev. Metall., 59(1959), 285
[80] M.J. Luton and C.M Sellars: Acta Metall., 17 (1969), 1033
[81] R. Sandstrom and R. Lagneborg: Acta Metall., 23 (1975), 387
[82] W. Roberts, H. Boden and B. Ahlblom: Metal Sci., 13 (1979), 195
[83] T. Sakai and J. J. Jonas: Acta Metall., 32(1984), 189
[84] M.J. Luton and P. Peczak: Mater. Sci. Forum, 113-115 (1993), 67
[85] H.J. McQueen and S. Bergerson: Met. Sci. J., 6(1972), 25
[86] L.Fritzmeier, M.J. Luton and J.J. McQueen: in “Strength of Metals and alloys”, ICSMA5, (eds. by P. Haasen et al.), 95, (1979), Oxford, Pergamon Press.
[87] T. Sakai, Y. Nagao, M. Ohashi and J.J. Jonas: Mater. Sci. Technol., 2 (1986), 659
[88] T. Sakai and M Ohashi: Mater. Sci. Technol., 6(1990), 1251.
[89] R.A.P. Djaic and J.J. Jonas: J. Iron Steel Inst., 210 (1972), 256
[90] Courtney, Mechanical behavior of materials, pp. 313-314
[91] Taku Sakai, Dynamic recrystallization microstructures under hot working conditions, Journal of Materials processing Technology 53 (1995) 349-361
[92] H. Yamagata and T. Koike, J. Japan Inst. Light Met., Vol. 48 (1998), pp. 52-59.
[93] A. W. Thomposon, Metallogr, Vol. 5 (1972), pp. 366
[94] G. Torres-Villasenor and J. Negrete, Mat. Sci. Forum, Vol. 243-245 (1997), pp. 553-556
[95] P. Gay, P. B. Hirsch and A. Kelly, Acta Cryst. 7, 41 (1954).
[96] M. Deighton and R. N. Parkins, Trans. Metall. Soc. A.I.M.E., Vol.245 (1969), pp. 1917-1927
[97] M. Staszewski et al., Z. Metallkd. 87 (1996) 2, pp. 144-149.
[98] Yi-Ying Lin, Chih-Fu Yang, The influence of the thermal and thermomechanical treatments on the microstructure and superplasticity in a Zn-22wt.﹪Al alloy, July, (2000)
[99] N. H. Pollakowski, J. Iron Steel Inst., 1952, vol. 169, p. 337.
[100] A. H. Cottrell and R. F. Stokes, Proc. Roy. Soc., Ser. A., 1955, vol. 233, p. 17.
[101] R. Z. Valiev and R. K. Islamgaliev, Superplasticity and superplastic forming 1998,. pp. 117-125.
[102] M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R. Z. Valiev and T. G. Langdon, Mater. Sci. Eng., A241 (1998), pp. 122-128.
[103] Qian, Z.X. Guo, Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel, Materials Science and Engineering A365 (2004) 180–185
[104] Yu-Sheng Yu, Chih-Fu Yang, A study on the strain softening and anneal hardening in Zn-22wt.﹪Al alloy, July, (2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top