跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/04 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宇東
研究生(外文):Yu-Dung Chen
論文名稱:以CAD系統披覆Cr-N-O複合鍍膜之沖蝕磨耗與腐蝕行為研究
論文名稱(外文):Study on erosion wear and corrosion behaviors of Cr-N-O duplex coatings by cathodic arc deposition system
指導教授:許正勳許正勳引用關係
指導教授(外文):Cheng-Hsun Hsu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:129
中文關鍵詞:Cr2O3CrN沖蝕彈性係數附著性硬度磨擦係數奈米壓痕
外文關鍵詞:CrNCr2O3erosionnanoindentationadhesionelastic modulushardnessfriction coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
陰極電弧沉積(Cathodic Arc Deposition, CAD)技術,是物理氣相沉積(PVD)技術之一。利用CAD製程鍍膜主要優點為高離化率、多電荷離子、離子動能高,其鍍膜具有高附著性與高密度、表面均一性佳、製程的條件範圍廣、低的基材溫度、膜與基材的成份一致。可披覆在鋼材上,改善用使用壽命。
CrN鍍膜之所以有高硬度、高溫抗氧化性、低摩擦係數、耐蝕及耐磨耗等特性,主因為表面容易生成氧化鉻Cr2O3所致。雖然在某些應用上,CrN的硬度仍不及TiN或TiAlN高,但CrN則有較佳之抗氧化及抗磨耗性。本研究則是基於CrN與Cr2O3間的相互關係,使用陰極電弧系統,改變氮氣/氧氣流量比來沉積Cr(N,O)/CrN複合鍍膜,並進行一連串的機械性質量測及儀器分析。
實驗結果顯示,鍍膜表面之微滴(droplet)之鉻含量略高,並從EPMA、XPS分析發現,除了XRD判斷出來的CrN及Cr2O3以外,Cr(N,O)/CrN鍍膜可能有其他化合物的存在,如CrO、Cr2N等,且由於Cr2O3在表面殘留之壓應力過大,使表面附著性不佳,而影響耐沖蝕性,但也因此Cr2O3/CrN鍍膜具有較高的硬度與彈性係數以及較低的磨擦係數,而在腐蝕試驗上,複合鍍膜則優於單層鍍膜。
Cathodic arc deposition (CAD) process is one of physical vapor deposition. Due to the advantages of high ion rate, more ions and high ion energy, the coatings own better adhesion, high density, high homogeneity, broader coating condition, lower substrate temperature and keeping homogeneity with target, the hard ceramic films coated on steel by CAD can improve its lifetime effectively.
CrN is easy to change to dense Cr2O3, so CrN have these properties, included high hardness, oxidation resistance at high temperature, low friction, corrosion and wear resistance. In some application, the hardness of CrN is lower than TiN or TiAlN, but its oxidation and wear resistance is better than both. Based on the relationship between CrN and Cr2O3, Cr(N,O)/CrN duplex films were coated by CAD by controlling the ratio of nitrogen and oxygen flow. A series of mechanical property measurement and analysis was deformed.
As shown in the experiment, the content of chromium of droplets is higher than the Cr2O3 coating. From EPMA and XPS analysis, the Cr(N,O)/CrN coatings included other compounds, ex: CrO3,Cr2N….etc, beside CrN and Cr2O3 known by XRD. Due to Cr2O3 have the higher residual compression stress, the Cr(N,O)/CrN coating was insufficient and affected the resistance erosion, but it had higher hardness and elastic modulus and lower friction. In the corrosion test, duplex coatings is superior to single coating.
目錄
英文摘要…….………......…………………………………………..……i
中文摘要 iii
誌謝 iv
目錄 v
圖目錄 x
表目錄 xv
第一章 前言………………………………….………………..…..…….1
第二章 文獻回顧……………………………………………… …….....3
2.1 陰極電弧沉積原理 3
2.2 氮化鉻鍍膜特性 7
2.3 鍍膜附著性量測方法 8
2.4鍍膜硬度量測方法 10
2.4.1 Hv硬度試驗 10
2.4.2 奈米壓痕 11
2.5鍍膜沖蝕行為 15
2.5.1鍍膜之沖蝕計量 15
2.5.2 影響鍍膜沖蝕行為之因素 17
2.5.2.1膜厚 17
2.5.2.2鍍膜硬度 17
2.5.2.3鍍膜韌性 17
2.5.2.4膜與基材間的界面性質 17
2.5.2.5沖蝕速度 18
2.5.2.6沖蝕角 18
2.5.2.7沖蝕顆粒大小及形狀 18
2.6 鍍膜磨耗行為 19
2.6.1 薄膜磨耗計量 19
2.6.2 影響磨擦係數的變數 20
2.6.2.1 鍍膜硬度 20
2.6.2.2 膜厚 20
2.6.2.3表面粗糙度 21
2.6.2.4 界面碎片 21
2.6.2.5 彈性係數 22
2.7 化學分析電子術 23
2.8鍍膜SIMS縱深分析 24
2.8.1 SIMS之原理 24
2.8.2 SIMS質譜儀的種類 25
2.9 鍍膜腐蝕行為 26
2.9.1 電化學腐蝕試驗 26
2.9.2 A356鋁熔液浸蝕試驗 27
第三章 實驗方法與步驟………………………………………………29
3.1 基材前處理及鍍膜 29
3.1.1 基材成份 29
3.1.2 熱處理 29
3.1.3 鍍膜前處理 30
3.1.4 鍍膜處理 32
3.2 鍍膜結構分析 33
3.2.1 XRD分析 33
3.2.2 SEM觀察 33
3.2.3 FE-SEM觀察 35
3.2.4 EPMA分析 33
3.2.5 FE-EPMA分析 34
3.2.6 AFM分析 34
3.2.7 XPS分析 34
3.3鍍膜特性分析試驗 35
3.3.1硬度及附著性試驗 35
3.3.1.1 維氏硬度試驗 35
3.3.1.2 洛氏硬度壓痕試驗 35
3.3.1.3 奈米壓痕試驗 35
3.3.2 微量顆粒沖蝕試驗 36
3.5.3 鍍膜磨耗試驗 37
3.3.4 水接觸角量測試驗 37
3.3.5 表面粗糙度 37
3.4 鍍膜腐蝕行為試驗 38
3.4.1 鹽水噴霧試驗 38
3.4.2 極化曲線試驗 39
3.4.3 A356 鋁熔液浸蝕試驗 40
第四章 結果與討論……………………………………………………41
4.1表面型態 41
4.1.1基材金相觀察 41
4.1.2鍍膜表面型態 41
4.2 鍍膜之組成與結構 48
4.3 鍍膜之附著性及硬度 54
4.3.1 附著性分析 54
4.3.2 Hv硬度 54
4.3.3 奈米壓痕分析 54
4.4 鍍膜之耐沖蝕性 63
4.5 鍍膜之耐磨耗性 70
4.6 鍍膜之耐蝕性 75
4.6.1 極化曲線 75
4.6.2 鹽霧試驗分析 80
4.6.3鋁熔液浸蝕試驗分析 85
4.7水接觸角量測 89
第五章 結論……………………………………………………………91
參考文獻 93
1.Oden M, Almer J, Hakansson G, “The effects of bias voltage and annealing on the microstructure and residual stress of arc-evaporated Cr-N coatings”, Surf. Coat. Technol., vol. 121 pp.272-276, 1999.
2.B. Navinsek, P. Panjan, “Novel applications of CrN (PVD) coatings deposited at 200℃”, Surf. Coat. Technol., vol. 74-75 pp.919-926, 1995.
3.Y. L. Su, S. H. Yao, “On the performace and application of CrN coating”, Wear, vol. 205, pp.112-119, 1997.
4.P. J. Martin, A. Bendavid, “Review of the filtered vacuum arc process and materials deposition”, Thin solid film, vol. 394, pp.1-5, 2001.
5.S. Han, J.H. Lin, J.J. Kuo, J.L. He, H.C. Shih, “The cavitation-erosion phenomenon of chromium nitride coatings deposited using cathodic arc plasma deposition on steel”, Surf. Coat. Technol, vol. 161, pp.20-25, 2002.
6.鍾長祥,酈唯誠,吳柏成,「電弧離子鍍ZrN薄膜之性質評估」,工業材料120期,85年12月,pp.48-52。
7.許世昌,「電弧離子鍍膜技術之概述」,工業材料120期,85年12月,pp53-57。
8.Da-Yung Wang, Ko-Wei Weng, Shi-Yao Hwang, “Study on metal-doped diamond-like carbon films synthesized by cathodic arc evaporation”, Diamond and Related Materials, vol. 9, pp.1762-1766, 2000.
9.W. K. Grant, C. Loomis, J. J. Moore, D. L. Olson, B. Mishra, A. J. Perry, “Characterization of hard chromium nitride coatings deposted by cathodic arc vapor deposition”, Surf. Coat. Technol., vol. 86-87, pp.788-796, 1996.
10.H. Ichimura, Y. Ishii, “Mechanical properties of arc-evaporated CrN coatings. PartII Intrinstic film hardness and composite hardness”, Surf. Coat. Technol., vol. 145, pp.94-100, 2001.
11.Raymond L. Boxman, Handbook of vacuum arc science and technology, pp.73-281, 1995.
12.何偉友,張宏源,氮化鉻硬質薄膜特性及在刀模具之應用,”機械技術”,第140期,pp.108,1996。
13.D.Y. Wang, K. W. Weng, “Deposition of CrN coatings by current-modulating cathodic arc evaporation”, Surf. Coat. Technol., vol. 137, pp. 31-37, 2001.
14.Vaclav V, “Structure of TiN coatings”, Surf. Coat. Technol., vol. 80, pp.61-65, 1996.
15.B. Navinsek and P. Panjan, “Oxidation resistance of PVD Cr, Cr-N and Cr-N-O hard coatings”, Thin Solid Films, vol. 59, pp.244-248, 1993.
16.B. Navinsek and P. Panjan, “Oxidation of CrNx hard coatings reactively sputtered at low temperature”, Thin Solid Films, vol. 223, pp.4-6, 1993.
17.Urgen M, Cakir AF, The effect of heating on corrosion behavior of TiN- and CrN-coated steels, Surf. Coat. Technol., vol. 96, pp.236-244, 1997.
18.Johann Rechberger and Roland Dubach, “Soft physical vapour deposition coatings – a new coating family for high performance cutting tools”, Surf. Coat. Technol., vol. 60, pp.584-586, 1993.
19.Eberhard Huber and Siegfried Hofmann, “Oxidation behaviour of chromium-based nitride coatings”, Surf. Coat. Technol., vol 68-69, pp.64-69, 1994.
20.B. Navinsek, P. Panjan, and I. Milosev, “Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures”, Surf. Coat. Technol., vol. 97, pp.182-191, 1997.
21.H. Schulz and E. Bergmann, “Properties and application of ion-plated coatings in the system CrC-N”, Surf. Coat. Technol., vol. 50, pp.53-56, 1991.
22.W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich and E. Broszeit, “Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests”, Thin solid Films, vol. 270, pp.431-438, 1995.
23.J.R. Tuck, A.M. Korsunsky, D.G. Bhat, S.J. Bull, “Indentation hardness evaluation of cathodic arc deposited thin hard coatings”, Surf. Coat. Technol., vol.139, pp.63-74, 2001.
24.Burnett P.J., Rickerby D.S., “Relationship between hardness and scratch adhesion”, Thin solid films, vol. 154, pp.403-416, 1987.
25.K. L. Changa, S. Hanb, J.H. Lina, J.W. Husa, H.C. Shiha, “The effect of MEVVA implanted Cr on the corrosion resistance of CrN coated low alloy steel by cathodic arc plasma deposition”, Surf. Coat. Technol., vol. 172, pp.72-78, 2003.
26.Kyung H. Nam, Yun M. Jung, Jeon G. Han, “A comparative study of microstructure and mechanical properties for CrNx films with various deposition rates by magnetron sputtering”, Surf. Coat. Technol, vol. 142-144, pp. 1012-1016, 2001
27.Fouad Attar, “Hardness evaluation of thin ceramic coatings on tool steel”, Surf. Coat. Technol., vol. 78, pp. 78-86, 1996.
28.Ranjana Saha, William D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation”, Acta Materialia, vol. 50, pp.23-38, 2002.
29.Xiaodong Li, Bharat Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications”, Materials Characterization, vol. 48, pp.11-36, 2002.
30.Oliver WC, Pharr GM, “Improved technique for determining hardness and elastic modulus using load and displacement sensing indenation experiments”, Journal of Materials Research, vol. 7, pp.1564-1580, 1992.
31.G.M. Pharr, “Measurement of mechanical properties by ultra-low load indentation”, Materials science and engineering A, vol. 253, pp. 151- 159, 1998.
32.Nanoindentierung – Eine Sonde für die lokalen mechanischen Eigenschaften. http://www.dgm.de/past/2004/metallographie/download/686_83.pdf.
33.Nano-Indentation Fixture for an MTS machine to measure Modulus. http://homepages.cae.wisc.edu/~bme300/nanoindent/bec&sean.mid.sem.paper.pdf.
34.D. Pan, T. G. Nieh, M. W. Chen, “Strengthening softening of nanocrystalline nickel during multistep nanoindentation”, Applied Physics Letters, vol. 88, pp.161922-1~3, 2006.
35.P.H. Shipway, I.M. Hutchings, “Measurement of durabiligy by solid particle erosion”, Surface and Coatings Technology, vol. 71, pp.1-8, 1995.
36.R.I. Trezona, M.J. Pickles, I.M. Hutchings, “A full factorial investigation of the erosion durability of automotive clearcoats”, Tribology, vol. 33, pp.559-571, 2000.
37.Q. Yang, D.Y. Seo, L.R. Zhao, X.T. Zeng, “Erosion resistance performance of magnetron sputtering deposited TiAlN coatings”, Surf. Coat. Technol., vol. 188-189, pp.168-173, 2004.
38.Archard, J.F., “Contact and rubbing of flat surfaces”, J. Appl. Phys., pp. 981-988, 1953.
39.K. Holmberg, Allan Matthews, H Ronkainen, “Coatings tribology-contact mechanisms and surface design”, Tribology International, vol. 31, pp.107-120, 1998.
40.K. Holmberg, H. Ronkainen, A. Matthews, “Tribology of thin coatings”, Ceramics International, vol. 26, pp.787-795, 2000.
41.K. Holmberg, A Matthews, Coatings Tribology-A concept, crtical aspects and future-directions, Thin Solid Films, vol. 253, pp.173-178, 1994.
42.A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coatings approach to optimized tribological behaviour, Wear, vol. 246, pp. 1-11, 2000.
43. T. Hubbard Cincinnati, Ohio, The handbook of surface imaging and visualization, Boca Raton, CRC Press, 1995.
44.行政院國家科學委員會精密儀器發展中心出版,”儀器總覽-表面分析儀器,pp.16-19,1998。
45.行政院國家科學委員會精密儀器發展中心出版,”科儀新知”,第52期,pp.36-48,1989年。
46.C. Liu, Q. Bi, H. Ziegele, A. Leyland and A. Matthews, “Structure and corrosion properties of PVD Cr-N coatings”, American Vacuum Society, vol. 20, pp. 772-780, 2002.
47.C. Liu, Q. Bi, A. Leyland, A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behavior of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrossion behaviour”, Corrosion Science, vol. 45, pp. 1243-1256, 2003.
48.S.H. Ahn, Y.S. Choi, J.G. Kim J.G. Han, “A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method”, Surf. Coat. Technol., vol. 150 2002, pp. 319-326.
49.Chang KL, Chung SC, Lai SH, Shih HC, “The electrochemical behavior of thermally oxidized CrN coatings deposited on steel by cathodic arc plasma deposition”, Applied Surface Science, vol. 236, pp. 406-415, 2004.
50.Chang KL, Han S, Lin JH, Hus JW, Shih HC, “The effect of MEVVA implanted Cr on the corrosion resistance of CrN coated low alloy steel by cathodic arc plasma deposition”’, Surf. Coat. Technol., vol. 172, pp. 72-78, 2003.
51.S.H. Ahn, J.H. Lee, H.G. Kim, J.G. Kim, “A study on the quantitative determination of through-coating porosity in PVD-grown coatings”, Applied Surface Science, vol. 233, pp. 105-114, 2004.
52.Wang D., Shi Z., Zou L., “A liquid aluminum corrosion resistance surface on steel”, Applied Surface Science, vol. 214, pp.304- 311, 2003.
53.C.S. Lin, C.S. Ke, H. Peng, “Corrosion of CrN and CrN/TiN coated heat-resistant in molten A356 aluminum alloy”, Surf. Coat. Technol., vol. 146-147, pp. 168-174, 2001.
54.Standard practice for Operating salt spray(fog) apparatus, Annual book of ASTM Standards, B117-95.
55.Boxman, R. L., Sanders D., P. J. Martin, Handbook of Vacuum Arc Science and Technology, vol. 86-87, pp.192, 1996.
56.汪建民,中國材料科學學會,材料分析,第13章,pp.353-382,1998年,民全書局。
57.N.Vidakis, A. Antoniadis and N. Bilalis, “The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds”, Journal of Materials Processing Technology, vol. 143-144, pp.481- 485, 2003.
58.Da-Yung Wang, Ming-Chieh Chiu, Characterization of Cr2O3/CrN duplex coatings for injection molding applications, Surf. Coat. Technol., vol. 137, pp.164-169, 2001.
59.R. J. Rodriguez, J. A. Garcia, A. Medrano, M. Rico, R. Sanchez, R. Martinez, C. Labrugere, M. Lahaye, A. Guette, Tribological behaviour of hard coatings deposited by arc-evaporation PVD, Vacuum, vol. 67, pp.559-566, 2002.
60.C.H. Hsu, J.K. Lu, K.L. Lai and M.L. Chen, “Erosion and corrosion behaviors of ADI deposited TiN/TiAlN coatings by cathodic arc evaporation”, Materials Transactions, vol. 46(6), pp.1417-1424, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top