(3.231.29.122) 您好!臺灣時間:2021/02/25 16:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴昀楷
研究生(外文):Yun-Kai Lai
論文名稱:機械合金法合成三元及四元鋁基非晶質合金之研究
論文名稱(外文):Synthesis of ternary and quaternary Al–based amorphous alloys by mechanical alloying technique
指導教授:胡家榮胡家榮引用關係
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:113
中文關鍵詞:機械合金法鋁基合金非晶質玻璃形成能力
外文關鍵詞:Mechanical alloyingAl-based alloysGlass forming of ability(GFA)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以機械合金法 ( Mechanical alloying ) 合成鋁基( Al-based )合金粉末並研究其非晶質化行為。實驗中藉由控制合金組成成份來研究其玻璃形成能力。使用X光繞射儀( XRD )觀察球磨粉末在機械合金化過程中,隨著球磨時間增加之結構變化。使用示差掃瞄卡計( DSC )及同步式熱重及熱差分析儀來研究球磨粉末之熱穩定性。使用掃描式電子顯微鏡( SEM )來觀察粉末外觀之改變。由實驗結果可知, Al50Ti45Ni5、Al50Ti40Ni10、Al60Ti35Ni5、Al50Ti45Cu5、Al50Ti40Cu10及Al50Ti45Si5三元合金皆可形成單一非晶相。而鋁基四元合金中,Al60Ti35Ni5-XSiX( X = 1~4 )、Al60Ti35-X Ni5SiX ( X = 1,3 )、Al60Ti35Ni5-XBX ( X = 1~3 )及Al60Ti35Ni5-XCuX ( X = 1~3 )合金系統也皆可形成單一非晶相,其中Al60Ti35Ni2Si3四元非晶合金具有寬廣的過冷液態區( △T = 103K,Trg = 0.476,γ= 0.378 )。
This study examined the amorphization behavior of Al-based alloying powders synthesized by mechanical alloying technique. It investigated the glass forming ability (GFA) by controlling the alloy compositions. The structural evolution of the as-milled powders during mechanical alloying was investigated by X-ray diffractometry(XRD). The thermal stability of the as-milled powders were analysed by the differential scanning calorimeter (DSC) and simultaneous DTA-TGA. The morphology of milled powders observed by scanning electron microscopy (SEM). As the results demonstrated, a single amorphous phase exists in Al50Ti45Ni5, Al50Ti40Ni10, Al60Ti35Ni5, Al50Ti45Cu5, Al50Ti40Cu10 and Al50Ti45Si5 ternary alloying powders. In the quaternary Al-based alloys, Al60Ti35Ni5-XSiX ( X = 1, 2, 3, 4 ), Al60Ti35-XNi5SiX ( X = 1, 3 ), Al60Ti35Ni5-XBX ( X = 1, 2, 3 ) and Al60Ti35Ni5-XCuX ( X = 1, 2, 3 ) alloy systems have also a single amorphous phase. Al60Ti35Ni2Si3 amorphous alloy have a wide supercooled liquid region. ( △T = 103K, Trg = 0.476, γ = 0.378 )
LIST OF CONTENTS

Page
中文摘要………………………………………………………I
Abstract………………………………………………………II
LIST OF CONTENTS……………………………………III
LIST OF TABLES…………………………………………VI
LIST OF FIGURES…………………………………………VIII

Chapter 1 Intrtroductions…………………………………1
Chapter 2 The reference review………………………………2
2.1 Amorphous alloys………………………………………2
2.2 Al-based amorphous alloys………………………………3
2.2.1 History of Al-based alloys……………………4
2.2.2 Al-ETM-LTM…………………………………5
2.2.3 Al-R………………………………………………6
2.2.4 Al-R-TM…………………………………………8
Chapter 3 : Experimental Procedures……………………………9
3.1 Mechanical Alloying process……………………………9
3.2 Characterization of alloy powders……………………….9
3.2.1 X-ray Diffraction analysis…………………………9
3.2.2 Thermal analysis…………………………………10
3.2.3 SEM observation…………………………………10
Chapter 4 Results and Discussions….………………………12
4.1 Al-Ti-Ni ternary alloy systems…………………12
4.1.1 Al50Ti50-XNiX alloy systems………………………12
4.1.2 Al60Ti40-XNiX alloy systems………………………13
4.1.3Al70Ti25Ni5 alloy …………………………………14
4.2 Al-Ti-Cu ternary alloy systems…………………14
4.2.1 Al50Ti50-XCuX alloy systems……………………14
4.2.2 Al60Ti40-XCuX alloy systems……………………15
4.3 Al-Ti-Si ternary alloy systems…………………16
4.3.1 Al50Ti50-XSiX alloy systems………………………16
4.3.2 Al60Ti35Si5alloy …………………………………17
4.4 Al-Ti-Ni-M quaternary alloy systems……………17
4.4.1 Al60Ti35Ni5-XSiX alloy systems…………………17
4.4.2 Al60Ti35-XNi5SiX alloy systems…………………18
4.4.3 Al60Ti35Ni5-XSnX alloy…………………………18
4.4.4 Al60Ti35Ni5-XBX alloy systems…………………19
4.4.5 Al60Ti35Ni5-XCuX alloy systems…………………19
4.5 SEM Observation of the alloy powders………………20
4.6 Amorphization behavior………………………………20
4.7 Glass forming ability…………………………………22
4.8 Crystallization behavior.………………………………23
4.9 The influence of constituent elements………………25
Chapter 5 Conclusions.……………………………………….27
REFERENCE………………………………………………………29

LIST OF TABLES

Table 2.1 Examples of glass-forming alloy.……………………33
Table 2.2 Mechanically properties, thermal stability and
electrical resistivity of Al-Ni-Zr、Al-Ni-Hf and
Al-Ni-Nb amorphous alloys…………………………34
Table 2.3 Mechanically properties of Al-Y-M, Al-La-M and Al-Ce-M amorphous alloys……………………………34
Table 2.4 Corrision losses of Al85Y10Ni5 amorphous alloy
in 1M HCl and 0.25M NaOH solution………………35
Table 3.1 The compositional range of mechanical alloy powder mixtures……………………………………………...35
Table 4.1 The glass forming ability of the Al60Ti35Ni2Si3
amorphous alloy.……………..……………………....36
Table 4.2 The activation energy of crystallization (Ec) for
Al60Ti35Ni2Si3 amorphous alloy…………….………..36
Table 4.3 The structures of mechanical alloying Al-based alloy….
……………………………………………………….37

Table 4.4 The atomic radii mismatch ( in % ) and binary heats
of mixing ( KJ/more) in Al, Ti, Ni, Si, Cu system..….38
Table 4.5 The atomic radii mismatch ( in % ) and binary heats
of mixing ( KJ/more) in Al, Ti, Ni, B, Sn system…....39

LIST OF FIGURES

Fig.1.1 Structures of the melt-spun Al-based binary and ternary alloys.…………………………………………….…......40
Fig.2.1 Microstructure mechanical strength of aluminum base
alloys.………………………...…………………….…..41
Fig.2.2 Effect of ETM on the glass formation Al70Fe20M10、
Al70Co20M10、Al70Ni20M10 and Al70Cu20M10 alloys by
Melt spinning………………………………….……....42
Fig.2.3 Composition ranges of formation of an amorphous
phase in melt-supn Al-R binary alloys.......................….42
Fig.2.4 Compositional ranges for the formation of amorphous
phase in Al-Y-M, Al-La-M and Al-Ce-M systems…..…43
Fig.2.5 Crystallization temperature (TX) of amorphous Al-R
alloys as a function of R content..…….…………..……44
Fig.2.6 Change in TX as a function of Y, La and Ce concentration
of Al90-XYXM10, Al90-XLaXM10 and Al90-XCeXM10………45
Fig. 3.1 Experimental Procedures…………………..………......46

Fig. 4.1 XRD patterns of Al50Ti45Ni5 powders after different
milling times…..…………..…………..…….………...47
Fig. 4.2 XRD patterns of Al50Ti40Ni10 powders after different
milling times……………………………….……….....48
Fig. 4.3 XRD patterns of Al50Ti35Ni15 powders after different
milling times………………………………….…….....49
Fig. 4.4 The DSC curves of the Al50Ti50-XNiX amorphous alloy
powders…….……………….……...……….………....50
Fig. 4.5 The DSC-TGA curves of the Al50Ti50-XNiX amorphous alloy powders……………………………………….....51
Fig. 4.6 XRD patterns of Al60Ti35Ni5 powders after different
milling times……………..…………………….……...52
Fig. 4.7 XRD patterns of Al60Ti30Ni10 powders after different
milling times…………………………….….………....53
Fig. 4.8 XRD patterns of Al60Ti25Ni15 powders after different
milling times…….……………………….…………....54
Fig. 4.9 XRD patterns of Al60Ti20Ni20 powders after different
milling time……………...……………………..…….55

Fig. 4.10 The DSC curves of the Al60Ti40-XNiX alloys powders.
……………....……………………………….……….56
Fig. 4.11 XRD patterns of Al70Ti25Ni5 alloy powders after
different milling times………………………….….....57
Fig. 4.12 (a) DSC curve and (b) DSC-TGA curve of the Al70Ti25Ni5 alloy powders……………………………58
Fig. 4.13 XRD patterns of Al50Ti45Cu5 alloy powders after
different milling times…………………………….....59
Fig. 4.14 XRD patterns of Al50Ti40Cu10 alloy powders after
different milling times……………..………………...60
Fig. 4.15 The DSC curves of the Al50Ti50-XCuX amorphous alloy
powders…………………...………….………………61
Fig. 4.16 The DSC-TGA curves of the Al50Ti50-XCuX amorphous
alloy powders……...…………………………………62
Fig. 4.17 XRD patterns of Al60Ti35Cu5 alloy powders after
different milling times…………………………….....63
Fig. 4.18 XRD patterns of Al60Ti30Cu10 alloy powders after
different milling times…………………………….....64

Fig. 4.19 The DSC curves of the Al60Ti40-XCuX alloys powders…..
……………...………………………………………...65
Fig. 4.20 XRD patterns of Al50Ti45Si5 alloy powders after
different milling times……………………………….66
Fig. 4.21 XRD patterns of Al50Ti40Si10 alloy powders after
different milling times…………………………….…67
Fig. 4.22 The DSC curves of the Al50Ti50-XSiX alloys powders…...
……………......……………………………………….68
Fig.4.23 The DSC-TGA curves of the Al50Ti50-XSiX alloys
powders……………….……………………………...69
Fig. 4.24 XRD patterns of Al60Ti35Si5 alloy powders after
different milling times……………..…………..…….70
Fig. 4.25 (a) DSC curve and (b) DSC-TGA curve of the Al60Ti35Si5 alloy powders..…...………..……………..71
Fig. 4.26 XRD patterns of Al60Ti35Ni4Si1 alloy powders after
different milling times………………………..……...72
Fig. 4.27 XRD patterns of Al60Ti35Ni3Si2 powders after different
milling times.………………………………………...73

Fig. 4.28 XRD patterns of Al60Ti35Ni2Si3 powders after different
milling times...………………………………...……..74
Fig. 4.29 XRD patterns of Al60Ti35Ni1Si4 powders after different
milling times...………………………………...…..…75
Fig. 4.30 DSC curves of Al60Ti35Ni5-XSiX alloy systems..……...76
Fig. 4.31 XRD patterns of Al60Ti34Ni5Si1 powders after different
milling times.……………………………...…………77
Fig. 4.32 XRD patterns of Al60Ti32Ni5Si3 powders after different
milling times…..…………….……..……...…………78
Fig. 4.33 DSC curves of Al60Ti35-XNi5SiX alloy system………..79
Fig. 4.34 XRD patterns of Al60Ti35Ni4Sn1 powders after
different milling times………..……………………...80
Fig.4.35 XRD patterns of Al60Ti35Ni3Sn2 powders after
different milling times………..……………………...81
Fig.4.36 The DSC curves of the Al60Ti35Ni5-XSnX alloys powders.
……………...…………………………………...……82
Fig. 4.37 XRD patterns of Al60Ti35Ni4B1 powders after different
milling times…...……………………………..……...83

Fig. 4.38 XRD patterns of Al60Ti35Ni3B2 powders after different
milling times…………………..……………………..84
Fig. 4.39 XRD patterns of Al60Ti35Ni3B2 powders after different
milling times..………………………………………..85
Fig. 4.40 DSC curves of Al60Ti35Ni5-XBX amorphous alloy
system……………………………………………..…86
Fig. 4.41 XRD patterns of Al60Ti35Ni4Cu1 alloy powders after
different milling times………..…..………………….87
Fig. 4.42 XRD patterns of Al60Ti35Ni3Cu2 alloy powders after
differentmilling times.…..……………..…………….88
Fig. 4.43 XRD patterns of Al60Ti35Ni2Cu3 alloy powders after
different milling times…..…………………..……….89
Fig. 4.44 DSC curves of Al60Ti35Ni5-XCuX amorphous alloy
system…………..…………………………...…….....90
Fig. 4.45 The SEM images of the elemental Al50Ti45Ni5
alloy powders after different milling times..….…..…91
Fig. 4.46 Cross section of mechanically alloyed Al50Ti45Ni5
powders after different milling times………………..92

Fig. 4.47 DSC-TGA curves of the Al60Ti35Ni2Si3 amorphous alloy annealing 1h at different temperature………………..93
Fig. 4.48 XRD patterns of Al60Ti35Ni2Si3 alloy powders after
milling 17hr and annealing 1hr at 350℃、500℃….…..94
Fig. 4.49 DSC curves of the amorphous Al60Ti35Ni2Si3 alloy
powders at different heating rates..…….…..…..….....95
Fig. 4.50 Tx v.s. lnΦof amorphous Al60Ti35Ni2Si3 alloy…...…..96
Fig. 4.51 ln(Φ/Tx2)v.s. 1000 / Tx of amorphous Al60Ti35Ni2Si3
alloy………………….……………..…………………97
Fig. 4.52 Heat of formation diagram showing the amorphous stability in Al-Ti system..………….…………………..98
1. Inoue A, Ohtera K, Tasi AP, Masumoto T. Jpn. J. Appl. Phys.
27(1988)L280-L282
2. Y. H. Kim, A. Inoue, T. Masumoto, Mater. Trans. JIM 31(1990) 747-749.
3. A. Inoue, H. Kimura, Journal of Light Metals 1(2001)31-41.
4. Eckert, J., Schultz, L., & Urban, K. (1997). Appl Phys Lett 55, 1001.
5. Koch. C.C, (1991). In R. W. Cahn, P. Hassen & E. J. Kramer (Eds.).
Processing of Metals and Alloys (Vol. 15, p. 193). Weinheim: VCH.
6. R. W. Cahn, A. L. Greer, Department of Materials Science and
Metallurgy, University of Cambridge, Cambridge CB2 3QZ, England.
7. A. Inoue, Master. Sci. Eng. A179A180 (1994) 57-61
8. A. Inoue, H.M. Kimura, Mater. Sci. Forum. 235-238 (1997) 873-880
9. Predecki P, Giessen BC, Grant NJ. Trans Metall Soc AIME
1965; 233:1438.
10. Ramachandrarao P, Laridjani M., Cahn RW. Z Metallkd 1972;64:43.
11. Davies HA. Hull JB. Scr Metall 1972; 6:241.
12. Chattopadyay k, Ramachandrarao R, Lele S, Anantharaman TR. In: Grant NJ, Giessen BC, Editors. Procesdings of 2nd Internal ConFerence on Rapidly Quenched Metals. Cambridge, MA: MIT Press, p. 157
13. Furrer P, Warlimont H. Mater Sci Engng 1977; 28:127
14. Davies HA. Trans Indian Inst Met 1981; 31:292.
15. Inoue A, Kitamura A, Masumoto T. J Mater Sci 1981;16:1895.
16. Suzuki RO, Komatsu Y, Kobayashi KE, Shingu PH, J Mater Sci 1983;
18:1195.
17. Inoue A, Bizen Y, Kimura HM, Yamamoto M, Tasi AP, Masumoto T. J
Mater Sci Lett 1987;6:811
18. Inoue A, Yamamoto M, Kimura HM, Masumoto T. J Mater Sci Lett
1987; 6:194.
19. Tasi AP, Inoue, A, Masumoto T. Met trans 1988; 19A:1369.
20. Tasi AP, Inoue, A, Masumoto T. J Mater Sci Lett 1988; 7:805.
21. Inoue A, Ohtera K, Masumoto T. Jpn J Appl Phys 1988; 27:L1796.
22. Inoue A, Ohtera K, Masumoto T. Jpn J Appl Phys 1988; 27:L736
23. Inoue A, Ohtera K, Zhang T, Masumoto T. Jpn J Appl Phys 1988;
27:L1583
24. Inoue A, Zhang T, Kita K, Masumoto T. T. Mater Trans, JIM 1989;
30:870.
25. Massalski TB. Binary alloy Phase diagrams, American Society for
Metals, Park, OH, 1986
26. Inoue A. Progress in Materials Science 43 (1998) 365-520.
27. Tasi AP, Inoue, A, Masumoto T. Metall Trans 1988; 19A:391.
28. Miedema AR, de Boer FR, Boom R. CALPHAD. Vol. 1 Oxford:
Pergamon Press, 1977, p. 341
29. Metal databook. Japan Institute of Metals, Maruzen, Tykyo, 1983. p.175.
30. W. Weeber and H. Bakker, Phys. B, 153(1988)93.
31. C. Polites, Physica. B., B135(1985)286.
32. C. C. Koch, O. B. Cavin, C. G. Mckamey and J. O. ScarBrough, Appl.
Phys. Lett., 43(1983)1017.
33. F. Petzoldt, B. Scholz and H. -D. Kunze, Mater. Sci, and Eng., 97 (1988)25.
34. E. Hellstern and L. Schultz, Appl. Phys. Lett., 48 (1986)124.
35. A. W. Weeber, A. J. Wester, W. J. Hagg and H. Bakker, Physica B., 145 (1987)349.
36. A. Inoue, T. Zhang, T. Masumoto,J. Non-Cryst. Solids 156-158 (1993) 473.
37. Y. Li, Mater Trans, JIM 42(2001) 556.
38. Z. P. Lu, C. T. Liu, Acta Materialia 50 (2002) 3501-3512.
39. M. Lasocka, Mater. Sci. Eng. 23 (1976)173.
40. H. E. Kissinger, J. Res. Natl. Bur. Stand. 57 (1956)217.
41. Inoue A, Zhang W, Zhang T and Kurosaka K, Mater. Trans. Vol.42 No.8(2001)1800-1804.
42. P. Nandi, P.M.G. Nambissan, I. Manna, Journal of Alloys and
Compounds 337 (2004) 179-187.
43. Kimura H , Sasamori K and Inoue A, Materials Transactions, JIM, Vol. 37, No.11 (1996) 1722-1725.
44. N. Q. Wu, J. M. Wu, Z. Z. Li and G.–X. Wang, Materials Transactions, JIM, Vol. 37, No.3 (1997) 255-259.
45. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema and A. K.
Niessen ed., Cohedion in Metals, Elsevier Science Publishers,
North-Holland, 1988.
46. Takeuchi A and Inoue A, Materials Transactions, JIM, Vol. 41, No.11
(2000) 1372-1378.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔