跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/12 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林世平
研究生(外文):Shih-Ping Lin
論文名稱:TiNxOy薄膜特性之研究
論文名稱(外文):Study on Properties of The TiNxOy Thin Films
指導教授:胡毅胡毅引用關係
指導教授(外文):Yi Hu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:66
中文關鍵詞:TiNxOy薄膜反應式直流磁控濺鍍
外文關鍵詞:TiNxOy thin filmreactive DC magnetron sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:2
藉調整所通入的O2與N2比例,利用反應式直流磁控濺鍍沈積TiNxOy薄膜於Si(100)、304鏡面不鏽鋼、載玻片與圓形小玻璃基板上,以了解不同N╱O比例對TiNxOy薄膜性質的影響。
發現濺鍍過程中,通入N2流量少於20 sccm時,會使薄膜形成近似非晶TiO2的型態,通入N2流量25 sccm時,構成具優選取向<200>的TiNxOy結晶薄膜。由AFM所作之表面型態觀察,發現大致上可形成均勻性良好之薄膜,薄膜顆粒尺度介於60奈米左右。表面平均中心粗糙度約在3奈米左右,所形成之薄膜具有相當平整的表面。
由UV-可見光光譜觀察,得知可由控制N╱O比可改變對光特定波長的吸收行為。且由於吸收波長的不同,薄膜所呈現出的顏色也會跟著改變。而N╱O比的改變也會影響薄膜鍵結與結晶結構,進而影響導電情況,若想要得到具良好導電性之TiNxOy薄膜,N與O流量的控制是相當的重要的。
To control different N/O ratio of reacting gas doped TiNxOy thin films by reactive DC magnetron sputtering on Si(100)、304 polished stainless steel、glasses and little circle glasses. In order to understand different N/O ratio affected the properties of TiNxOy thin films.
When N2 was communicated less then 20 sccm during the sputter process that would let the thin films constructed to non-crystal TiO2 approximately. N2 was communicated about 25 sccm could construct <200> preferential orientation of crystal TiNxOy thin films. The surface morphologies were observed by Atomic Force Microscope. By this method, could depose well-uniform thin film that we could see. The surface particle scale of TiNxOy thin films were about 60 nm by Atomic Force Microscopy observed. The surface roughness Ra was about 3 nm. Therefore, it is quite smooth plate surface of thin films.
The spectrums had studied by UV-visible light spectrophotometer. It was realized that controlling the N/O ratio of reacting gas could change the absorption of different wavelength. As a result of, the absorption of different wavelength could appear different colors of TiNxOy thin films. In addition, changing the N/O ratio of reacting gas could affect the structure and the bonding of TiNxOy thin films. Then, the resistivities of TiNxOy thin films were also affected. If we want to obtain more conductive TiNxOy thin films, to control N/O ratio of reacting gas was quite important.
英文摘要…………………………………………………….…………….....I
中文摘要………………………………………………………………….. III
內容目錄………………………………………………………………...…IV
表目錄…………………………………………………………………….VII
圖目錄…………………………………………………………………....VIII
第一章 導論………………………………………………………………….1
1.1 前言…...……….……………………………………………………1
1.2 TiNxOy鍍膜應用近況........................................................................2
1.2.1 太陽能集熱器之選擇性太陽光吸收鍍膜表面應用............2
1.2.2 生醫材料方面之應用...........................................................2
1.3 實驗目的...........................................................................................3
第二章 原理與文獻回顧………………...…………………………………..4
2.1 反應式磁控濺鍍…………………………………………………..4
2.1.1 電漿濺鍍...............................................................................4
2.1.2 磁控濺鍍...............................................................................6
2.1.3 反應式濺鍍...........................................................................6
2.2紫外光與可見光光譜吸收原理.......................................................7
2.3 不同沈積溫度對TiNxOy鍍膜性質的影響……………………….9
2.3.1 對N╱O比例的影響............................................................9
2.3.2 對結晶結構的影響...............................................................9
2.3.3 膜厚與表面型態.................................................................10
2.3.4 對電性的影響.....................................................................11
2.4 不同N╱O比例對TiNxOy鍍膜性質的影響……………………11
2.4.1 對結晶結構的影響.............................................................11
2.4.2 對硬度與內應力的影響.....................................................12
2.4.3 對電阻率的影響.................................................................12
第三章 實驗流程………………………………………………………..….13
3.1 基板前處理………………………………………………………13
3.2 濺鍍過程…………………………………………………………14
3.3 薄膜性質檢測................................................................................16
3.3.1 XRD繞射分析.....................................................................16
3.3.2 UV-可見光光譜儀...............................................................16
3.3.3 AFM原子力顯微鏡.............................................................17
3.3.4電性量測(四點探針&Electrometer)..................................17
3.3.5 X-ray Photoelectron Spectroscope(XPS)............................18
3.4 熱處理過程....................................................................................18
第四章 結果與討論………………………………………………………...19
4.1 XRD繞射結構分析………………………………………………19
4.2 AFM表面型態與粗糙除度………………………………………21
4.3 UV-可見光光譜分析……………………..…………………….22
4.4電阻率與電阻觀察……………………………………………….24
4.5 XPS光電子光譜分析……………………………………………25
第五章 結論………………………………………………………….……28
參考文獻…………………………………………………………………...29

表目錄

Table 3 試片編號與N2跟O2流量關係表.................................................33
Table 4.1 鍍膜中心平均粗糙度(Ra)……………..……………………….34
Table 4.2 鍍膜表面平均顆粒大小..............................................................35
Table 4.3 濺鍍於載玻片基板上之電阻率與電阻值..................................36

圖目錄

Figure 2.1 直流輝光放電之(a)示意圖,及(b)電位分布圖,虛線為陽極上所放的基板為絕緣體之電位降.......................................................37
Figure 2.2 磁控濺鍍示意圖........................................................................38
Figure 3 實驗流程示意簡圖.......................................................................49
Figure 4.1 不同N2與O2流量比例之304基板上XRD glancing angle繞射圖...................................................................................................................40
Figure 4.2 不同N2與O2流量比例之Si(100)基板上XRD glancing angle繞射圖...........................................................................................................41
Figure 4.3 不同N2與O2流量比例之載玻片基板上XRD繞射圖.............42
Figure 4.4 不同N2與O2流量比例之圓形小玻璃片基板上XRD繞射圖.43
Figure 4.5 不同N2與O2流量比例之圓形小玻璃片基板上,經300℃、2小時熱處理之XRD glancing angle繞射圖.................................................44
Figure 4.6 不同N2與O2流量比例之圓形小玻璃片基板上,經400℃、2小時熱處理之XRD glancing angle繞射圖.................................................45
Figure 4.7 不同N2與O2流量比例之圓形小玻璃片基板上,經500℃、2小時熱處理之XRD glancing angle繞射圖.................................................46
Figure 4.8 不同N2與O2流量比例之304基板上AFM表面形態(2D)…47
Figure 4.9 不同N2與O2流量比例之304基板上AFM表面形態(2D)…48
Figure 4.10 不同N2與O2流量比例之304基板上AFM表面形態(2D)…49
Figure 4.11 不同N2與O2流量比例之304基板上AFM表面形態(2D)…50
Figure 4.12 不同N2與O2流量比例之載玻片基板上AFM表面形態(2D)………………………………………………………………………...51
Figure 4.13 不同N2與O2流量比例之載玻片基板上AFM表面形態(2D)………………………………………………………………………...51
Figure 4.14 不同N2與O2流量比例之載玻片基板上AFM表面形態(2D)………………………………………………………………………...52
Figure 4.15 不同N2與O2流量比例之載玻片基板上AFM表面形態(2D)………………………………………………………………………...53
Figure 4.16 不同N2與O2流量比例之304基板上可見光-UV光譜...................................................................................................................54
Figure 4.17 不同N2與O2流量比例之304基板上可見光-UV光譜...................................................................................................................55
Figure 4.18 不同N2與O2流量比例之304基板上可見光-UV光譜...................................................................................................................56
Figure 4.19 不同N2與O2流量比例之304基板上可見光-UV光譜...................................................................................................................57
Figure 4.20 不同N2與O2流量比例之載玻片基板上可見光-UV光譜...................................................................................................................57
Figure 4.21 不同N2與O2流量比例之載玻片基板上可見光-UV光譜…………………………………………………………………………...58
Figure 4.22 不同N2與O2流量比例之載玻片基板上可見光-UV光譜…………………………………………………………………………...59
Figure 4.23 不同N2與O2流量比例之載玻片基板上可見光-UV光譜...................................................................................................................60
Figure 4.24 濺鍍於Si(100)上,未熱處理經40秒離子轟擊清理表面之XPS Ti 2p光譜..............................................................................................61
Figure 4.25 濺鍍於Si(100)上,未熱處理經40秒離子轟擊清理表面之XPS N 1s光譜...............................................................................................62
Figure 4.26 濺鍍於Si(100)上,未熱處理經40秒離子轟擊清理表面之XPS O 1s光譜...............................................................................................63
Figure 4.27 濺鍍於Si(100)上,經500℃、2小時熱處理40秒離子轟擊清理表面之XPS Ti 2p光譜.....................................................................64
Figure 4.28 濺鍍於Si(100)上,經500℃、2小時熱處理40秒離子轟擊清理表面之XPS N 1s光譜......................................................................65
Figure 4.29 濺鍍於Si(100)上,經500℃、2小時熱處理40秒離子轟擊清理表面之XPS O 1s光譜......................................................................66
【1】Oh S, Suh D, Lee S., Mater. Sci. Eng. 248 (A1998) 245.
【2】Fisher B., Am. Ceram. Soc. Bull. 65 (1986) 283.
【3】Takahashi T, Masugata K, Kawai H, Kontani S, Yamamoto J., Vacuum 59 (2000) 777.
【4】Wittmer M., Appl. Phys. Lett. 37 (1980) 540.
【5】Wittmer M, Melchior H., Thin Solid Films 93 (1982) 397.
【6】A.K. Ghosh, H.P. Maruska, J., Electrochem. Soc. 124 (1997) 116.
【7】W. Choi, A. Termin, M.R. Hoffman, J. Phys. Chem. 98 (1994) 13669.
【8】R. Asahi, T. Ohkawa, K. Aoki, Y. Taga, Science 293 (2001) 269.
【9】T. Lindgren, J.M. Mwabora, E. Avendaño, J. Jonsson, A. Hoel, C.G. Granqvist, S.E. Lindquist, J. Phys. Chem. B 107 (2003) 5709.
【10】F. Fabreguette, L. Imhoff, J. Guillot, et al., Surf. Coat. Technol. 125 (2000) 396.
【11】B. Granier, C. Chatillon, M. Allibert, J. Am. Ceram. Soc. 65 (1982) 465.
【12】F. Fabreguette, M. Maglione, L. Imhoff, et al., Appl. Surf. Sci. 6881 (2001) 1.
【13】“Graded cermet selective coatings based on chromium and titatium”, C. Nunes, V. Texeira, m. L. Prates, N.P. Barradas, A. D. Sequeira,in “Advance Coating on Glass & Plastic for Large-Area or High-Volume Products”, ed. C.P. Klages, H.J. Gläser, M. A. Aegerter, Braunschweig, Fermany, (2002) p.547-553.
【14】V. Teixeira, E. Sousa, M.F. Costa, C. Nunes, L. Rosa, M. J. Carvalho, M. Collares-Pereira, E. Roman and J. Gago, “Chromium-based thin sputtered composite coatings for solar thermal collectors”, Vacuum, Vol.64, Issues 3-4, (2002), p.299-305.
【15】N. Huang, et al., Biomaterials 19 (1998) 771.
【16】I. Dion, et al., Biomaterials 14 (1993) 169.
【17】I. Tsyganov, M.F. Maitz, E. Wieser, E. Richter, H. Reuther, Surf. Coat. Technol. 200 (2005) p.1041-1044.
【18】李正中, 薄膜光學與鍍膜技術, 第三版, 藝軒圖書出版社, (2002) p.296-303.
【19】徐國洲, “在不同基板溫度下以磁控濺鍍法成長氮化鎵薄膜之研究”, 國立中山大學物理研究所, 碩士論文, (2000).
【20】K. Jagannadham, A.K. Sharma, Q. Wei, R Kalyanraman and J. Narayan. J. Vac. Sci. Technol. A, 16(5) (1998) 2804.
【21】邱承美, 陶金華, 儀器分析原理, 修訂第四版, 科文出版社, (1991)P
【22】F. Fabreguette, L. Imhoff, J. Guillot, B. Domenichini, M.C. Marco de Lucas, P. Sibilot, S. Bourgeois, M. Sacilotti, Surf. And Coat. Technol. 125 (2000) p.396-399.
【23】F. Fabreguette, M. Maglione, L. Imhoff, B. Domenichini, M.C. Marco de Lucas, P. Sibilot, S. Bourgeois, M. Sacilotti, Chem. Vap. Deposition 6 (2000) p.109-114.
【24】F. Fabreguette, M. Maglione, L. Imhoff, B. Domenichini, M.C. Marco de Lucas, P. Sibilot, S. Bourgeois, M. Sacilotti, Appl. Surf. Sci. 175-176 (2001) p.574-578.
【25】Y. Makino, M. Nose T. Tanaka, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, K. Nogi, Surf. And Coat. Technol. 98 (1998) p.934-938.
【26】E. Alves, A.R. Ramos, N.P. Barradas, F. Vaz, P. Cerqueira, U. Kreissig, Surf. And Coat. Technol 180-181 (2004) p. 372-376.
【27】F.A. Grant, Rev. Mod. Phys. 31(1959)646.
【28】S. Petigny, H. Mostefa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn, S. Bourgeois, Surf. Sci. 410(1998)250.
【29】J. Guillot, F. Fabreguette, L. Imhoff, O. Heintz, M.C. Marco de Lucas, M. Sacilotti, B. Domenichini, S. Bourgeois, Appl. Surf. Sci. 177(2001)p.268-272
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top