跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/15 23:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱思蓉
研究生(外文):Szu-Jung Chiu
論文名稱:冷電漿沈積有機膜在不銹鋼表面以提升其耐蝕性及細胞貼附性
論文名稱(外文):Cold Plasma Deposited Organic Film on Stainless Steel to Improve Corrosion Resistant and Cell Attachment
指導教授:陳克紹陳克紹引用關係
指導教授(外文):Ko-Shao Chen
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:97
中文關鍵詞:電漿沈積不銹鋼防蝕
外文關鍵詞:plasma depositionstainless steelcorrosion resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
不銹鋼因具有良好的強度、延展性及抗磨耗性而被廣泛的應用在生醫植入物上。然而,不銹鋼不具有生物相容性且在生理環境下會產生腐蝕現象。除此之外,不銹鋼為一無機且生物惰性材料,會因此而影響其表面生物分子的固定及降低在生醫上的應用。改善生物適應性最簡單的方法為在材料表面固定上具有生物相容性之生物分子,例如軟骨硫素(chondroitin sulphate),這是由 D-glucuronic acid 和 N-acetyl galatosamine 重複單位組成的硫酸化黏多醣,具有3 種同形異構物。於人體中廣泛分佈在軟骨與結締組織、血管壁角膜、肌腱與皮膚中,是一種生物相容性良好的材料。在本研究中,係利用電漿沉積一層有機矽金屬薄膜在不銹鋼基材上以形成一抗蝕介面層,並進ㄧ步利用光接枝聚合、架橋劑的交聯反應及生物分子的固定來提升其表面抗蝕性及生物適應性。結果可知,不銹鋼經過適當的電漿沉積處理條件(20W- 3~20min)確實可提升其表面抗蝕性。此外,由FTIR及ESCA可知利用此一方法確實可將生物分子成功固定在基材上。由纖維母細胞培養結果可知經過生物分子固定處理之不銹鋼,具有較佳之生物適應性。
Stainless steels were widely used in biomaterials due to their high impact strength, high resistance to wear, ductile, absorption of high strain energy properties. However, the disadvantages of stainless steels were low biocompatibility and will corrosion in physiological environment. Besides, stainless steels are an inorganic and inert materials, will limited its surface drug immobilization and medical application. Chondroitin-6-sulfate (C-6-S) is the bulk of the matrix that builds vertebral discs, ligaments, cartilage and other connective tissues. It was widely distribution in human body, so it’s a biocompatible biomolecular. The easy way of improve biocompatibility of specimens is to immobilize biomolecular on the surface. In this study, the plasma deposition methods were used to obtain insulator and anticorrosion coating, and subsequent to surface graft polymerization of water soluble monomers for immobilized chondroitin-6-sulfhate to improve cell attachment. From FTIR and ESCA, the C-6-S were successful immobilized on specimens. The potential dynamic tests results shown that stainless steel through plasma deposited Hexamethyldisilazane (HMDSZ), the corrosion behavior can be controlled. Future more, the hydrophilic and biocompatibility can be improve after graft polymerization of water soluble monomers acrylic acid and then immobilized chondroitin-6-sulfhate through EDC (carbodiimide) cross linked.
INDEX
Englishi Abstract.........................................................................................I
Chinese Abstract………………………………………………....……...III
LIST OF TABLES……...........................................................................Ⅶ
LIST OF FIGURES..................................................................................Ⅷ
Chapter 1
Introduction………...........……………………………………………….1
1.1 Biomaterial...........................................................................................2
1.2.1 Plasma...............................................................................................7
1.2.2 Plasma Modifications.......................................................................8
1.2.3 Plasma Treatment............................................................................11
1.3.1 Surface Photo-grafting.....................................................................13
1.3.2 Photo-introduced Graft Polymerization...........................................14
1.4 Immobilization of Biopolymer...........................................................15
1.5 Chondroitin-6-sulfate (C-6-S)............................................................18
1.6 Cell.....................................................................................................18
Chapter 2
Experiment...............................................................................................21
2.1 Experiment Flowchat.........................................................................22
2.2 Materials and Agents.........................................................................24
2.2.1 Substrates........................................................................................24
2.2.2 Reagents for cleaning samples’ surface..........................................24
2.2.3 Gases for plasma cleaning...............................................................24
2.2.4 Monomers for plasma deposition....................................................24
2.2.5 Gases for plasma post-treatment.....................................................25
2.2.6 Reagent for surface photo-grafting.................................................25
2.2.7 Crosslinking agent for immobilized biopolymer............................25
2.2.8 Natural & biocompatible polymer..................................................25
2.3 Sample preparation............................................................................25
2.4 Plasma surface modification..............................................................26
2.4.1 Argon plasma cleaning...................................................................26
2.4.2 Cold plasma deposition..................................................................26
2.4.3 Oxygen plasma post-treatment.......................................................27
2.4.4 Air furnace thermal decomposed....................................................27
2.5 UV induce surface graft polymerization............................................28
2.6 Immobilization of Chondroitin-6-sulfate (C-6-S)..............................29
2.7 Analyses methods...............................................................................29
2.7.1 Potential dynamic test......................................................................29
2.7.2 Water contact angle analyses...........................................................30
2.7.3 Glow discharge optical spectrometry analyses................................30
2.7.4 ATR-FTIR.......................................................................................31
2.7.5 ESCA (XPS)....................................................................................31
2.7.6 FESEM morphologies.....................................................................31
2.8 Cell attachment and growth test.........................................................32
2.8.1 Cell culture observation...................................................................32
2.8.2 MTT tests.........................................................................................32
2.8.3 Surface morphology observation of Fibroblast-cell by SEM..........33
Chapter 3
Results and Discussion.............................................................................39
3.1 The wetability of modified surface.....................................................40
3.2 Potentialdynamic test..........................................................................45
3.3 FESEM morphology observation.......................................................53
3.4 GDOS analyses...................................................................................60
3.5 Chemical structures of surfaces..........................................................64
3.6 XPS.....................................................................................................72
3.7 Cell culture test and SEM morphological observation.......................87
Conclusion………………………..…………………...………………..92
Reference…………………….……………………..………………….94

LIST OF TABLES
Table 1.1 Examples of materials used in implants.....................................4
Table 1.2 Mechanical properties of some biological materials and biomaterials................................................................................5
Table 1.3 Composition of austenitic stainless steels (balance % iron).......6
Table 1.4 Some stainless steel alloy (AISI) types in use............................6
Table 2.1 The concentrations of stainless steel (wt%).............................34
Table 3.1 Wettability of plasma modified SS (by water contact angle)...42
Table 3.2 Wettability of modified stainless steel specimens ( by water contact angle)............................................................................44
Table 3.3 Corrosion potential (Ecorr) and current (Icorr) of plasma modified SS..............................................................................48
Table 3.4 Corrosion potential (Ecorr) and current (Icorr) of plasma modified SS..............................................................................48
Table 3.5 Corrosion potential (Ecorr) and current (Icorr) of different post-treated modified specimens..............................................51
LIST OF FIGURES
Fig.1.1 Mechanism of covalent attachment of chondroitin sulphate (CS) to polymer using 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC)...........................................................................................17
Fig.2.1 The structure of Chondroitin-6-sulfate.........................................34
Fig.2.2 Schematic diagram of HMDSZ plasma polymerization equipment with a bell-jar reaction chamber..................................................35
Fig.2.3 Schematic diagram of O2 plasma equipment with 13.56 MHz RF power generator...........................................................................36
Fig.2.4 The parameter of air furnace process...........................................37
Fig.2.5 Schematic diagram of UV-light graft polymerization apparatus..38
Fig.3.1 The water contact angle of stainless steel sheets (a); HMDSZ plasma modified (b); oxygen plasma post-treated-[b], (c) and Air furnace thermal oxidation-[b], (d)...............................................43
Fig.3.2 The potentialdynamic tests of 20W-HMDSZ plasma modified specimens with different treatment time; black line : unmodified (a) 3 min (b) 10min (c) 20 min (d) 30 min (e) all........................47
Fig.3.3 The potentialdynamic test of 50W-HMDSZ plasma modified specimens with different treatment time; black line : unmodified (a) 3 min (b) 10min (c) 20 min (d) 30 min (e) all........................49
Fig.3.4 The potentialdynamic test of different post-treated specimens; (a) unmodified (b) plasma modified (c) oxygen plasma post-treated (d) air furnace thermal oxidation.................................................50
Fig.3.5 The potentialdynamic test of 50W-HMDSZ plasma modified specimens with different treatment time; (a) 3 min (b) 10min (c) 20 min and (d) 30 min.................................................................52
Fig.3.6 The FESEM morphologies of (a) plasma modified (b) oxygen plasma post-treated (c) thermal oxidized.....................................56
Fig.3.7 The FESEM morphologies of plasma modified specimens via (a) acrylic acid grafted; (b) EDC cross-linked on (a);and (c) biomolecular C-6-S immobilized on (b)......................................57
Fig.3.8 The FESEM morphologies of oxygen plasma post-treated specimens via (a) acrylic acid grafted; (b) EDC cross-linked on (a) and (c) biomolecular C-6-S immobilized on (b)..........................58
Fig.3.9 The FESEM morphologies of thermal oxidized via (a) acrylic acid grafted; (b) EDC cross-linked on (a) and (c) biomolecular C-6-S
immobilized on (b)......................................................................59
Fig.3.10 The GDOS analyses compositional variation at the near surface of plasma modified specimen....................................................61
Fig.3.11 The GDOS analyses compositional variation at the near surface of oxygen plasma post-treated specimen..................................62
Fig.3.12 The GDOS analyses compositional variation at the near surface of air thermal oxidized PDHMDSZ on stainless steel specimen...................................................................................63
Fig.3.13 The IR spectrum of different post-treated plasma HMDSZ modified specimens, (A) unmodified stainless steel (B) PDHMDSZ (C) oxygen plasma post-treated (D) air oxidized film............................................................................................68
Fig.3.14 The IR spectrum of HMDSZ modified specimens during series treatments, (a) unmodified stainless steel (b) PDHMDSZ (c) AAc-grafting (d) immobilized C-6-S........................................69
Fig.3.15 The IR spectrum of oxygen plasma post-treated HMDSZ modified specimens during series treatments, (a) oxygen plasma post-treated (b) AAc-grafting (c) immobilized C-6-S...............70
Fig.3.16 The IR spectrum of air furnace post-treated HMDSZ modified specimens during series treatments, (a) air furnace treated (b) AAc-grafting (c) immobilized C-6-S........................................71
Fig.3.17 The ESCA widely range analyses of unmodified stainless steel sheets.........................................................................................75
Fig.3.18 The ESCA widely range analyses of HMDSZ plasma modified stainless steel sheets..................................................................76
Fig.3.19 The (a) C1s and (b) Si2p spectrums of plasma modified specimens..................................................................................77
Fig.3.20 The (a) O1s and (b) N1s spectrums of plasma modified specimens..................................................................................78
Fig.3.21 The ESCA widely range analyses of acrylic acid grafted onto PDHMDSZ stainless steel sheets..............................................79
Fig.3.22 The O1s spectrum of acrylic acid grafted onto PDHMDSZ stainless steel sheets..................................................................80
Fig.3.23 The ESCA widely range analyses of EDC cross-linked onto PDHMDSZ and AAc grafted stainless steel sheets...................81
Fig.3.24 The (a) N1s and (b) C1s spectrums of EDC cross-linked onto PDHMDSZ and AAc grafted stainless steel sheets...................82
Fig.3.25 The O1s spectrum of EDC cross-linked onto PDHMDSZ and
AAc grafted stainless steel sheets.............................................83
Fig.3.26 The ESCA widely range analyses of C-6-S immobilized onto PDHMDSZ, AAc grafted and EDC crosslinked stainless steel sheets........................................................................................84
Fig.3.27 The (a) C1s and (b) N1s spectrums of C-6-S immobilized onto PDHMDSZ, AAc grafted and EDC crosslinked stainless steel sheets........................................................................................85
Fig.3.28 The (a) S2p and (b) O1s spectrums of C-6-S immobilized onto PDHMDSZ, AAc grafted and EDC crosslinked stainless steel sheet..........................................................................................86
Fig.3.29 The MTT assay of surface modified stainless steel sheets : P : HMDSZ plasma modified, O:O2 plasma post-treated, a : air thermal oxidized, Non: unmodified, cell: control dish.............89
Fig.3.30 The SEM morphologies of one day cell attached on modified stainless steel sheets : (a) unmodified (b) plasma modified (c) O2 plasma post-treated (d) air furnace thermal oxidized..........90
Fig.3.31 The SEM morphologies of 14 days cell attached on modified stainless steel sheets : (a) unmodified (b) plasma modified (c) O2 plasma post-treated (d) air furnace thermal oxidized..........91
References
[1] Sujata V. Bhat, Biomaterials, Alpha Science International Ltd, Pangbourne England, 2002. p.1
[2] Sujata V. Bhat, Biomaterials, Alpha Science International Ltd, Pangbourne England, 2002. p.2
[3] Sujata V. Bhat, Biomaterials, Alpha Science International Ltd, Pangbourne England, 2002. p.26-27
[4] Sujata V. Bhat, Biomaterials, Alpha Science International Ltd, Pangbourne England, 2002. p.4
[5] Sujata V. Bhat, Biomaterials, Alpha Science International Ltd, Pangbourne England, 2002. p.5
[6] Xiao-Lin Wanga*, Jian Huangb, Xiu-Zhen Chen”, Xue-Hai ,Desalination 146 (2002) 337-343
[7] Bell, A. T., Fundamentals of Plasma Cheimistry. In Techniques & Applications of Plasma Chemistry (J.R. Hollan and A.T. Bell, eds.) Wiley, New York(1974).
[8] Ekaterina Radeva, Thin plasma-polymerization layers of hexamethyldisilozane for acoustoelectronic humidity sensors, Sens. And Actuators B 44, 275-278(1997).
[9] M. L. P. da Silva, I.H. Tan, A.P. Nascimento Filho, E. Galeazzo, and D.P.Jesus, Use of plasma polymerized highly hydrophobic hexamethyldisilozane (HMDS) films for sensor development, Sensors and Actuators B91, 362-369(2003).
[10] K. Yamamoto, T. Harada, N. Tomikawa, H. Uyama, S. C. Yang, and H. Fujiyama, Temperature measurement of polymer substrates during plasma irradiation, Thin Solid Films 345, 94-98(1999).
[11] N. Morosoff, Plasma Deposition, Treatment, and Etching of Polymers, 1. An Introduction to Plasma Polymerization, 1990 by Academic Press, Inc.
[12] Poncin-Epaillard, B. Chevet, and J.-C. Brosse, Eur, Poly. J. 26, 233 (1990)
[13] D. T. Clark, A. Dilks, and D. Shuttleworth, in Polumer Surfaces, Ed. D. T. Clark and W. J. Feast, New Youk, 1987, p. 185
[14] Plasma Deposition, Treatment, and Etching of Polymers, Ed. R. d’Agostino, Academic Press, New York, 1991.
[15] N. Inagaki, S. Tasaka, H. Kawai, and Y. Kimura, J. Adhesion Sci. Technol. 4, 99 (1990).
[16] Morra, E. Occhiello, and F. Grabassi, Surface Interface Anal. 16, 412 (1990)
[17] D. T. Clark, W. J. Feast, W. K. R. Musgrave, and I. Ritchie, J. Polym. Chem. Ed. 13, 857(1975)
[18] Yagi, A. E. Pavlath, and A. G. Pittman, J. Appl. Polym. Sci.
Polym.Chem. Ed. 23, 1125 (1985).
[19] Tanigawa, M. Ishilawa, and k. Nakamae, J. Adhesion Sci. Technol.
5, 543 (1991).
[20] D. Egittio, Pure Appl. Chem. 632, 1699(1990).
[21] L. Kaplan and P. W. Rose, Int. J. Adhesion Adhesives 11, 109 (1991)
[22] D. H. Reneker and L. H. Bolz, J. Macromol. Sci. Chem. ,10, (1976) 599
[23] M. Suzuki, A. Kishida, H. Iwata, and Y. Ikada, Macromolecules, 19,
(1986) 1804
[24] H. Iwate A. Kishida, M. Suzuki, Y. Hata, and Y. Ikada, J. Appl. Polym.
Sci., Part A. Polym. Chem., 26, (1988) 3309
[25] G. H. Hsiue and W. K. Hang, J.Appl. Polym. Sci., 30, (1985) 1023.
[26] P. Cuatrecasas, and C. B. Anfinsen
[27] G. C. M. Steffens, L.Nothdurft, G. Buse, H. Thissen, H. Hocker, and
D.Klee, Biomaterials, 23, 3523(2002).
[28] Y. Shuhei, D. Irma Van, Y. Akiko, K. Hiroshi, and S. Kazuyuki, FEBS Letters, 458, 327(1999).
[29] Stephen R. Bolsover, Jeremy S. Hyams, Elizabeth A.Shephard, Hugh A. White, Claudia G. Wiedemann, Cell Biology, Wiley-Liss A John Wiley & Sons, INC., Publication, U.S., 2003, p.1
[30] Stephen R. Bolsover, Jeremy S. Hyams, Elizabeth A.Shephard, Hugh A. White, Claudia G. Wiedemann, Cell Biology, Wiley-Liss A John Wiley & Sons, INC., Publication, U.S., 2003, p.462
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top