跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/10 04:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王鉅鈞
研究生(外文):Chu-Chun Wang
論文名稱:超深冷處理對AISID2工具鋼耐磨耗性質之研究
論文名稱(外文):Wear resistance study on cryogenic treated AISI D2 tool steel
指導教授:陳繁雄陳繁雄引用關係
指導教授(外文):Fan-Shiong Chen
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:77
中文關鍵詞:超深冷處理殘留沃斯田體耐磨耗性
外文關鍵詞:cryogenic treatmentretained austenitewear resistance
相關次數:
  • 被引用被引用:10
  • 點閱點閱:512
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以高合金冷作工具鋼AISI D2藉超深冷處理中以各種不同之冷卻速率和低溫持溫時間及隨後之回火於不同溫度,探討從殘留沃斯田體到麻田散體的變態過程,並以微觀組織觀察、硬度、殘留沃斯田體含量檢測及耐磨耗性的比較來評估不同處理過程對於D2工具鋼所造成的的差異,藉以找出最佳之超深冷處理的條件。實驗結果得知淬火後之試片以直接浸入液態氮而後經低溫回火者,其耐磨耗性最佳。
This research is to study the transformation of retained austenite and try to find an optimum condition for transformation mechanism by virtue of different cooling rates and different holding times in cryogenic temperature as well as the subsequent tempering processes. Cold work tool steel AISI D2 has been used as specimens material. The wear resistance evaluations have been made by use of the microstructures, hardness, retained austenite content of the specimens derived from different treatment conditions. The experiment results show that the specimens being directly dipped in liquid nitrogen and then followed by low temperature tempering exhibited the best wear resistance.
Table of Content
摘要………………………………………………………………………………………Ⅰ
Abstract………………………………………………………………...………………..Ⅱ
Table of Content………………………………………………………..……………….Ⅲ
The List of Table……………………………………………………...…………………Ⅴ
The List of Figure……………………………………………………..………………...Ⅵ
1. Introduction………………………………………………………..…………………1
2. Literature review………………………………………………………………..……3
2.1 Introduction of high alloy cold work tool steel AISI D2…………………………..3
2.2 Cryogenic treatment process………………………………………………………4
2.2.1 Snap tempering…………………………………………………………….5
2.2.2 Cooling rate………………………………………………………………..5
2.2.3 Soaking time……………………………………………………………….5
2.2.4 Tempering………………………………………………………………….6
2.3 Reduction of retained austenite……………………………………………………7
2.4 Precipitation of fine carbides………………………………………………………7
2.5 Wear mechanism…………………………………………………………………..8
3. Experimental details……………………………………………………………..….11
3.1 Preparation of specimens…………………………………………………………11
3.2 Heat treatment……………………………………………………………………12
3.2.1 Vacuum heat treatment…………………………………………………...12
3.2.2 Conventional heat treatment……………………………………………...12
3.2.3 Cryogenic treatment……………………………………………………...12
3.3 Hardness test……………………………………………………………………...13
3.4 Retained austenite estimate………………………………………………………14
3.5 Scanning electron microscopic observation……………………………………...15
3.6 Wear resistance test………………………………………………………………15
4. Results and discussion…………………………………………………………..…..17
4.1 Hardness………………………………………………………………………….17
4.2 Content of retained austenite……………………………………………………..18
4.3 Microstructure observations..…………………………………………………….19
4.3.1 Comparison between conventional heat treatment and cryogenic treatment on microstructure………………………………………………………....19
4.3.2 Effects of cooling rate and soaking time in cryogenic treatment on microstructure…………………………………………………………….20
4.4 Wear test………………………………………………………………………….21
4.4.1 Effect of cooling rate on cryogenic treatment followed by low temperature tempering…………………………………………………………………22
4.4.2 Effect of soaking time on cryogenic treatment followed by high temperature tempering……………………………………………………22
4.4.3 Wear behavior…………………………………………………………….23
4.5 Effects of snap tempering and double high temperature tempering……………...24
4.5.1 Effect of snap tempering…………………………………………………24
4.5.2 Effect of double high temperature tempering…………………………….25
5. Conclusion………………………………………………………………………...…27
References……………………………………………………………………………29
References
[1] Wayne Reitz and John Pendray, Cryoprocessing of Materials: A Review of Current Status, Materials and Manufacturing Processes, vol. 16, 2001, pp. 829-840, n6.
[2] Collins, David N, Cryogenic Treatment of Tool Steels, Advanced Materials & Processes, vol. 154, 1998, n6.
[3] George Krauss, Steels: heat treatment and processing principles, ASM international, 1993, pp. 410-422.
[4] 黃振賢, 金屬熱處理, 第十八版, 新文京開發出版有限公司, 1993, pp. 65-68, 405-408.
[5] William F. Smith, Structure and Properties of Engineering Alloys, 2ed, McGraw-Hill, 1993, p. 403, figure 9-10.
[6] 大和久重雄, Cryogenic Treatment, 熱�幘z(日本), vol.42, 2002, pp. 137-144, n2.
[7] Dennis J. Kamody, Using Deep Cryogenics to Advantage, Advanced Materials & Processes, 1998, pp. 215-218.
[8] Robert Wilson, Metallurgy and Heat Treatment of Tool Steels, McGraw-Hill, UK, 1975, pp. 90-91.
[9] Kamody, D.J. US Patent 5,259,200, 1993.
[10] Dobbins, D.B. Cryogenic Treatment Can Boost Life, Metalforming, 1995.
[11] Barron, R.F. Cryogenic Treatment of Metals to Improve Wear Resistance, Cryogenics, 1982, vol. 22, p. 409.
[12] D.N. Collins and J. Dormer, Deep Cryogenic Treatment of a D2 Cold-work Tool Steel, Heat Treatment of Metals, Ireland, 1997, pp. 71-74.
[13] M.Cohen, The Strengthening of Steel, Trans TSM-AIME, vol. 224, 1962, pp. 638-656.
[14] Fanju MENG, Kohsuke TAGASHIRA, Ryo AZUMA and Hideaki SOHMA, Role of Eta-carbide Precipitations in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment, ISIJ International, Japan, vol. 34, 1994, pp. 205-210, n2.
[15] Robert Wilson, Metallurgy and Heat Treatment of Tool Steels, McGraw-Hill, UK, 1975, p. 69, table1.4.
[16] H. Brandis, E. Haberling, and H.H. Weigard, Metallurgical Aspects of Carbides in High Speed Steels, in Processing and Properties of High Speed Tool Steels, M.G.H. Wells and L.W. Lherbier(Eds), TMS-AIME, Warrendale, PA, 1980, pp. 1-18.
[17] Karl-Heinz Zum Gahr, Microstructure and wear of materials, Elsevier Science, New York, 1987, pp. 84-108, figure 4-25.
[18] 大同工學院, 材料實驗講義-磨耗試驗, 1987, pp. 42-44.
[19] ASTM E975-03 Standard Practice for X-Ray Determination Crystallographic Orientation.
[20] L. C. CHENG, T.B. WU, C.T. HU, The role of microstructure features in abrasive wear of a D-2 tool steel, Journal of Materials Science, vol. 23, 1988, pp. 1610-1614.
[21] George Krauss, Steels: heat treatment and processing principles, ASM international, 1993, pp. 424-427.
[22] Collins D. N. , Deep Cryogenic Treatment of Tools Steels-a Review, Heat Treatment Met, vol. 23, 1996, p. 40, n2.
[23] Popandopulo A. N. and Zhukova L. T., Transformation in high speed steels during cold treatment, Metal Science and Heat Treatment, vol. 22, 1980, pp. 708-710.
[24] Fan-Shiong Chen, Chen-Yi Wei, Wear Resistance Improvement of AISI D2 Tool Steel by Post Treatment of Plasma Nitriding on Chromium Carbide Coating Prepared by TRD, Dissertation for Ph. D. Degree, Department of Materials Engineering, Tatung University, 2004, pp. 21-24.
[25] Ernest Rabinowicz, Friction and wear of materials, Wiley, John & Sons, New York, 1995, pp. 128- 132.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 44. 劉福勳(2004)。「營建企業經營診斷之初探」。營造天下,100,7-11。
2. 43. 劉福勳(2003)。「營建業應重視財務警訊之建立」。營造天下,82,6-11。
3. 42. 劉福勳(2002)。「營建業經營策略與公司轉型之初探」。營造天下,68,13-16。
4. 41. 劉福勳(2001)。「營建業財務危機案例分析與因應策略」。營造天下,56,14-18。
5. 39. 劉同敏(2003)。「在台外國營造廠商之探討」。營造天下,89,8-14。
6. 37. 詹盡忠(1999)。「營造業的上市上櫃之道」。營造天下,26,28-31。
7. 31. 陳煌銘(2004)。「台灣營造產業環境分析與改善策略建議(下)」。營造天下,102,9-16。
8. 28. 陳雪紅、黃家瑤(2005)。「台灣營造業發展歷程之回顧」。營造天下,112,15-22。
9. 19. 范光懿(2003)。「台灣營造業整裝待發」。營造天下,77,11-14。
10. 17. 胡偉良(2003)。「潛在金融危機下的台灣營建業」。營造天下,82,12-16。
11. 14. 林清波(2002)。「營造產業的企業經營與社會責任」。營造天下,68,6-8。
12. 6. 白金瑞(2003)。「未來的營造業—2010年」。營造天下,88,9-15。
13. 46. 蔡宗儐、黃聖欽(2004)。「營造業轉投資關鍵成功因素之研究」。營造天下,104,7-15。
14. 47. 蔡宗儐、蔡哲安、黃冠雄(2005)。「營造業經營關鍵成功因素之研究—以工程估價作業為範疇」。營造天下,107,27-36。
15. 55. 謝定亞、陳建年(2000),「國內營建業上市上櫃公司經營危機之探討」,營造天下,47、48,47-51。