跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 20:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏志榮
研究生(外文):Chih-jung Yen
論文名稱:尖晶石相LiMn2O4電極與碳酸乙烯酯/碳酸二乙酯電解液間生成界面之研究
論文名稱(外文):Studies on the SEI Formed between Spinel LiMn2O4 and EC/DEC Electrolyte
指導教授:吳溪煌
指導教授(外文):She-huang Wu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:76
中文關鍵詞:固態電解質界面鋰錳氧化物靜電噴塗沉積
外文關鍵詞:LiMn2O4SEI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以靜電噴塗沉積法(ESD)在白金板上沉積含Li、Mn離子之前驅物。經由不同溫度和持溫時間來進行熱處理製備尖晶石相的LiMn2O4正極,分別以ICP、XRD和SEM來測定電極的元素組成、結晶結構及表面型態。經由電容量測定來比較經不同熱處理條件所得正極之電化學特性。此種電極因不含任何黏結劑和助導劑,有助於固態電極-電解質層間之界面(SEI)的研究。在本研究中,以FTIR來分析形成SEI的官能基來推測生成界面化合物。雖然經由Hard X-ray分析並未在電極觀察到值得注意的變化,但由FTIR之觀察分析發現電解液與LiMn2O4電極間未經充電即有界面層生成。在首次充放電過程中,電池充電至4.1V以上時,可發現碳酸鋰(Li2CO3)界面層消失。而當放電至3.7V時,可發現有碳酸鋰(Li2CO3)和含(-(CO)OO(CO)-)官能基之介面層生成。且在隨後的充放電過程中,碳酸鋰(Li2CO3)和(-(CO)OO(CO)-)官能基會不斷重覆地於充電至4.1V消失和放電至3.7V時出現。
Spinel LiMn2O4 was prepared via electrostatic spray deposition (ESD) method and followed by heat-treatment at various temperatures for various durations. The compositions, crystalline and morphology of the electrodes were investigated with ICP, XRD and SEM. The electrochemical properties of thus prepared electrodes were studied by capacity retention studies. These kind of electrode do not contain any binder or conductive. They are good for solid-electrolyte interface (SEI) studies. In this study, FTIR was used to investigate the SEI formed. It is found that Li2CO3 forms on the spinel electrode before cycling. However, no significant change on the electrode film was found by the image obtained by hard X-ray. The Li2CO3 disappeared as the coin cell was charged to 4.1 V. Compounds containing Li2CO3 and (-(CO)OO(CO)-) functional group appeared as the coin cell was discharged to 3.7 V. After that, Compounds containing Li2CO3 and (-(CO)OO(CO)-) functional group appeared/disappeared periodically as the cells discharged/charged to 3.7 V and 4.1 V, respectively.
CHINESE ABSTRACT………………………………….……..……………I
ENGLISH ABSTRACT…………………………………….….…………... II
CONTENTS…..………………………………………………....…………III
LIST OF TABLE………………………………………………….….……VII
LIST OF FIGURE……………………………………………………...…VIII
CHAPTER 1 Introduction…………………………………………………...1
CHAPTER 2 Literature Review……………………………………………..3
2.1 The Principles of Li-ion Batteries……………………………………..3
2.2 The LiMn2O4 material………………………………………………....5
2.2.1 Structures and Electrochemical Properties LiMn2O4……………5
2.2.2 Reasons of the Capacity Fade for LiMn2O4 ……………….........6
2.3 Solid Electrolyte Interface (SEI) of Li-ion Batteries System…............7
2.4 Analysis Method of Electrochemical………………………………...10
2.4.1 Fourier Transform Infrared Spectroscopy,FT-IR……………...10
CHAPTER 3 Experimental……………………….………………………...13
3.1 Cathode Preparation……………………….……….…………….......13
3.1.1 Preparation of the Stock Solutions…………..…………………13
3.1.2 Preparation of the Precursor Solutions……….………………..13
3.1.3 Synthesis of the Cathode Electrodes……………………...........13
3.2 Character of the Prepared Cathode…………………………………..14
3.2.1 The XRD Study………………………………………………..14
3.2.2 Scanning Electron Microscope (SEM) Analysis…………........16
3.2.3 Fourier Transform Infrared Spectroscopy (FT-IR) Analysis…..16
3.3 Assembly of the Coin-Type Cells……………………………...…….16
3.4 Capacity Retention Study………………………………………........17
3.5 Analysis of SEI between Spinel Cathode and Electrolyte…………...17
3.5.1 Samples before Charge/Discharge……………………………..17
3.5.2 Samples Charged/Discharged to Various Voltages during
the 1st Cycle…………………..……….………………………..18
3.5.3 Samples Charged/Discharged to Various Voltage of the
10th Cycle………………………………….……………………19
3.5.4 Charged/Discharged Samples after Various Cycles…….……..20
3.5.5 SEM of the Fresh and the Cycled Spinel Cathodes……....…...20
CHAPTER 4 Results and Discussion…………………………… ……......22
4.1 Characterization of the Spinel Cathodes Prepared by ESD
Method…………………………………………………………........22
4.1.1 Effects of Heat-treatment Temperature………………………...22
4.1.2 Effect of Heat-treatment Duration……………………………..23
4.1.3 Characterization of the Sample Heated at 750oC for 3 h.……...24
4.2 FTIR Study of Spinel Electrode before Charge/Discharge
Cycling…………………………………………………………........26
4.2.1 FTIR of the Electrolyte exposed in Air for various duration……26
4.2.2 FTIR of the LiMn2O4 Electrode Contact with Electrolyte
in Air…..………………………………………………………..26
4.3 FTIR Study of the Spinel LiMn2O4 Electrodes Disassembled
in Air after Cycling…………………………………………………28
4.3.1 FTIR Study of the LiMn2O4 Electrodes obtained during
the First Charge/Discharge Cycle……………………………....28
4.3.2 FTIR Study of the LiMn2O4 Electrode obtained during the
10th Charge/Discharge Cycle…………………………………...29
4.3.3 FTIR Study of the Charged/Discharged after Various
Cycles…………………………………………………………..30
4.4 FTIR Study of the Spinel LiMn2O4 Electrodes Disassembled in Glove Box after Cycling……………………………………………………30
4.4.1 FTIR Study of the LiMn2O4 Electrodes Disassembled in
Glove-Box during the Initial Cycle…………………………...30
4.4.2 FTIR Study of the LiMn2O4 Electrodes Disassembled in
Glove-Box during the 10th Cycle………………………….…..31
4.5 Images Study during the Charge/Discharge Cycle……………….….32
4.6 SEM Study of LiMn2O4 Electrodes at Various States…...…………...33
CHAPTER 5 Conclusion...………………………………………………....34
REFERENCES……………………………………………………………..36
[01] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater. 10 (1998) 725.
[02] J.M. Tarascon, M. Armand, Nature 414 (2001) 359.
[03] H.W. Chan, J.G. Duh, S.R. Sheen, J. Power Sources 115 (2003) 110.
[04] W.-S. Yoon, K.-Y. Chung, K.-H. Oh, K.-B. Kim, J. Power Sources 119-121 (2003) 706.
[05] F. Cao, J. Prakash, Electrochimica Actab47 (2002) 1607.
[06] C. Wu, Z. Wang, F. Wu, L. Chen, X. Huang, Solid State Ionics 44 (2001) 277.
[07] I.J. Davidson, R.S. Mcmillan, J.J. Murray, J.E. Greedan, J. Power
Sources 54 (1995) 232.
[08] A.J. Paterson, A.D. Robertson, P.G. Bruce, Electrochem. And
Solid-State Lett. 7 (2004) A331.
[09] M. Wu, Q. Zhang, H. Lu, A. Chen. Solid State Ionics 169 (2004) 47.
[10] F. Nobili, F. Croce, B. Scrosati, R. Marassi, Chem. Mater. 13 (2001) 1642.
[11] J. Ying, C. Wan, C. Jiang, Y. Li, J. Power Sources 99 (2001) 78.
[12] P. Periasamy, H.S. Kim, S.H. Na, S.I. Moon, J.C. Lee, J. Power Sources 132 (2004) 213.
[13] N. Yabuuchi, T. Ohzuku, J. Power Sources 119-121 (2003) 171.
[14] I. Belharouak, Y.K. Sun, J. Liu, K. Amine, J. Power Sources 123 (2003) 247.
[15] N. Yabuuchi, T. Ohzuku, J. Power Sources 146 (2005) 636.
[16] K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.
[17] J. M. Osorio-Guillen, B. Holm, R. Ahuja, B. Johansson, Solid State Ionics 167 (2004) 221.
[18] S. J. Kwon, C. W. kim, W. T. Jeong, K. S. Lee, J. Power Sources 137
(2004) 93.
[19] G. Li, A. Yamada, Y. Fukushima, K. Yamaura, T. Saito, T. Endo, H. Azuma, K. Sekai, Y. Nishi, Solid State Ionics 130 (2000) 221.
[20] D.G. Wickham, W.J. Croft, J. Phys. Chem. Sloids 7 (1958) 351.
[21] K. Araki, N. Sato, J. Power Sources 124 (2003) 124.
[22] L. Norin, R. Kostecki, F. McLarnon, Electrochem. Solid-State Lett. 5 (2002) A67.
[23] K. Edstrom, T. Gustafsson, J.O. Thomas, Electrochimica Acta 50 (2004) 397.
[24] M.G.S.R. Thomas, P.G. Bruce, J.B. Goodenough, J. Electrochem. Soc. 132 (1985) 1521.
[25] M.D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach U. Heider, L. Heider, J. Electrochem. Soc. 146 (1999) 1276.
[26] C.H. Chen, J. Liu, K. Amine, J. Power Sources 96 (2001) 321.
[27] W.S. Yoon, S.H. Ban, K.K. Lee, K.B. Kim, M.G. Kim, J.M. Lee, J. Power Sources 97-98 (2001) 282.
[28] C.H. Chen, E.M. Krlder, M.J.G. Jak, J. Schoonman, Solid State Ionics 86-88 (1996) 1301.
[29] J.L. Shui, G.S. Jiang, S. Xie, C.H. Chen, Electrochimica Acta 49 (2004) 2209.
[30] W.S. Yoon, K.Y. Chung, K.H. Oh, K.B. Kim, J. Power Sources 119-121 (2003) 706.
[31] D.W. Murphy, Mat.Res.Bull. 13 (1978) 1395.
[32] M.S. Whittingham, M.S. Whittinghamand, A.J. Jacobson, Edited, Academic Press 1 (1982).
[33] M. Armand, D.W. Murphy, J. Broadhead, B.C.H. Steels, Eds, Plenum Press, New York 145 (1980).
[34] Vanderspurt, H. Thomas, Taylor, D. Paul, U.S. Patenrs 4 190,620(1980).
[35] T. Nagaura, K. Tazawa, Prog. Batteries Solar Cell 9 (1990) 20.
[36] P. Endres, B. Fuchs, S.K. Sack, K. Brandt, G.F. Becker, H.W. Praas, Solid State Ionics 89 (1996) 153.
[37] M.M. Thackeray, J. Electrochem. Soc. 144(5) (1997) 100.
[38] H. Berg, O. Bergstrom, T. Gustafsson, E.M. Kelder, J.O. Thomas, J. Power Sources 68 (1997) 24.
[39] F. Lubin, A. Lecert, M. Broussely, J. Labat, J. Power Sources 34 (1991) 161.
[40] M.R. Manciai, L. Petrucci, F. Ronci, P.P. Prosini, S. Passerini, J. Power Sources 68 (1997) 24.
[41] P. Arora, B.N. Popov, R.E. White, J. Electrochem. Soc. 145 (1998) 807.
[42] W. Yang, Q. Liu, W. Qiu, S. Lu, L. Yang, Solid State Ionics 121 (1999) 79.
[43] Y. Xia M. Yoshio, J. Power Sources 66 (1997) 129.
[44] L. Feng, Y. Chang, L. Wu, T. Lu, J. Power Sources 63 (1996) 149.
[45] H.M. Wu, J.P. Tu, Y.F. Yuan, Y. Li, X.B. Zhao, G.S. Cao, Scripta Materialia 52 (2005) 513.
[46] J. Hunter, J. Solid State Chem. 39 (1981) 142
[47] T.J. Richardson, S.J. Wn, K.A. Striebel, P.N. Ross, Jr., E.J. Cairns, Materials Research Bulletin vol. 32, No.5 (1997) 609.
[48] M.M. Thackeray, P.J. Johnson, L.A. De Picciotto, P.G. Bruce, J.B. Goodenough, Mat. Res. Bull. 19 (1984) 179.
[49] Y. Xia M. Yoshio, J. Electrochem. Soc. 143 (1996) 825.
[50] M.M. Thackeray, J. Electrochem. Soc. 142 (1995) 2558.
[51] D. Guyomard, J.M. Tarascon, Solid State Ionics 69 (1994) 222.
[52] Y. Gao, J.R. Dahn, Slid State Ionics 84 (1996) 33.
[53] M.N. Richard, E.W. Fuller, J.R. Dahn, Solid State Ionics 73 (1994) 81.
[54] M.W. Mehrens, A. Butz, R. Oesten, G.. Arnold, R.P. Hemmer, R.A. Huggins, J. Power Sources 68 (1997) 582.
[55] B. Banov, Y. Todorov, A. Trifonova, A. Momchilov, V. Manev, J. Power Sources 68 (1997) 578.
[56] L. Sanchez, J.L. Tirado, J. Electromchem. Soc. 114(6) (1997) 1939.
[57] R. Stoyanova, E. Zhercheva, L. Zarkova, Solid State Ionics 73 (1994) 233.
[58] Y. Gao, J.R. Dahn, J. Electrochem. Soc. 143 (1996) 1783.
[59] D.H. Jang, Y.J. Shin, S.M. Oh, J. Electrochem. Soc. 143 (1196) 2204.
[60] D.H. Jang, S.M. Oh, J. Electrochem. Soc. 144 (1997) 3342.
[61] R.J. Gummow, A de Kock, M.M. Thackeray, Solid State Ionics 69 (1994) 59.
[62] E. E. Yair, Electrochemical and Solid State Lett. 2(5) (1999) 212..
[63] D. Bar-tow, E. Peled, L. Burstein, J. Electrochem. Soc. 146 (1999) 824.
[64] F. Kong, R. Kostecki, G. Nadeau, X. Song, K. Zaghib, K. Kinoshita,
F. McLarnon, J. Power Sources 97 (2001) 58.
[65] F. King, F. McLarnon, J. Power Sources 89 (2000) 180.
[66] K.C. Moeller, H.J. Santner, W. Kern, S. Yamaguchi, J.O. Besenhand,
M. Winter, J. Power Source 119-121 (2003) 561
[67] Y. Wang, X. Guo, S. Greenbaum, J. Liu, K. Aminc, Electrochem. Solid State Lett. 4 (2001) A68.
[68] B.V. Ratnakumar, M.C. Smart, S. Surampudi, J. Power Sources 97-98 (2001) 137.
[69] D. Aurbbach, M.D. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, J. Electrochem. Soc. 145 (1998) 3024.
[70] D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R. Oesten, M. Schmide, J. Electrochem. Soc. 147 (2000) 1322.
[71] T. Eriksson, A.M. Andersson, A.G. Bishop, C. Gejke, T. Gustafsson. J.O. Thomas, J. Electrochem. Soc. 149 (2002) A69.
[72] Y. Matsuo, R. Kostecki, F. McLarnon, J. Electrochem. Soc. 148 (2001) A687.
[73] P. Arora, R.E. White, J. Electrochem. Soc. 145 (1998) 3647.
[74] A.N. Dey, B.P. Sullivan, J. Electrochem. Soc. 117 (1970) 222.
[75] E. Peled, J. Electrochem. Soc. 12 (1979) 2047.
[76] S. Lee, S. Pyun, Carbon 40 (2002) 2333.
[77] A.M. Andersson, A. Henningson, H. Siegbahn, U. Jansson, K. Edstroem, J. Power Sources 119 (2003) 522.
[78] M. Balasubramanian, H.S. Lee, X. Sun, X.Q. Yang, A.R. Moodenbaugh, J. McBreen, D.A. Fischer, Z. Fu, Electrochem. Solid State Lett. 5 (2002) A22.
[79] D. Ostrovskii, F. Ronci, B. Scrosati, P. Jacobsson, J. Power Sources 94 (2001) 183.
[80] K. Kanamura, J. Power Sources 81-82 (1999) 123.
[81] K. Kanamura, T. Umegaki, M. Ohashi, S. Toriyama, S. Shiraishi, Z. Takehara, Electrochim. Acta 47 (2001) 433.
[82] D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R. Oesten, M. Schmide, J. Electrochem. Soc. 147 (2000) 1322.
[83] T. Eriksson, A.M. Andersson, A.G. Bishop, C. Gejke, T, Gustafsson, J.O. Thomas, J. Electrochem. Soc. 149 (2002) A69.
[84] S.W. Song, G.V. Zhuang, P.N. Ross, Jr., J. Electrochem. Soc. 151(8) (2004) A1162.
[85] Y.-K. Sun, Solid State Ionics 100 (1997) 115.
[86] C. Masquelier, M. Tabuchi, K. Ado, R. Kanno, Y. Kobayashi, Y. Maki, O. Nakamura, B. Goodenough, J. Solid State Chem. 123 (1996) 255.
[87] S. Chitra, P. Kalyani, T. Mohan, R. Gangadharan, B. Yebka, S. Castro-Garcia, M. Massot, C. Julien, J. Electrochem. 3 (1999) 433.
[88] L. El-farh, M. Massot, M. Lemal, C. Julien, J. Electrochem. 3 (1999) 425.
[89] B. Ammundsen, G.R. Burns, M.S. Islam, H. Kanoh, J. Roziere, J. Phys. Chem. 103B (1999) 5175.
[90] C.M. Julien, M.A. Camacho-Lopez, Materials Science and Engineering B 108 (2004) 179.
[91] K.-I. Morigaki, J. Power Source 103 (2002)253.
[92] T. Matsushita, K. Dokko, K. Kanamura, J. Power Sources 146 (2005) 360.
[93] K. Edstrom, M. Herstedt, D.P. Abraham, J. Power Sources 153 (2006) 380.
[94] M. Broussely, Ph. Biensan, F. Bonhomme, Ph. Blanchard, S. Herreyre, K. Nechev, R.J. Staniewicz, J. Power Sources 146 (2005) 90.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top