|
[1] Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE.C60: Buckminsterfullerene. Nature 1985; 318(12):132-3. [2] Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(7):56-8. [3] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter.Nature 1993; 363(17):603-5. [4] Dresselhaus MS, Dresselhaus G, Saito R. Physics of carbon nanotubes.Carbon 1995; 33(7):883-91. [5] Tarasov BP, Muradyan VE, Shul’ga YM, Krinichnaya EP, Lai HJ et al. S ynthesis of carbon nanostructures by arc evaporation of graphite rods with Co–Ni and YNi catalysts. Carbon 2003; 41:1357-64. [6] Yao M, Liu B, Zou Y, Wang L, Sundqvist et al. Synthesis of single-wall carbon nanotubes and long nanotube ribbons with Ho/Ni as catalyst by arc discharge. Carbon 2005; 43:2894-901. [7] Yudasaka M, Ichihashi T, Komatsu T, Iijima S. Single-wall carbon nanotubes formed by a single laser-beam pulse. Chem Phys Lett 1999; 299:91-6. [8] Nishide D, Kataura H, Suzuki S, Tsukagoshi K, Aoyagi Y, Achiba Y. High-yield production of single-wall carbon nanotubes in nitrogen gas. Chem Phys Lett 2003; 372:45-50. [9] Smiljanic O, Stansfield BL, Dodelet JP, Serventi A, D’esilets S. Gas-phase synthesis of SWNT by an atmospheric pressure plasma jet. Chem Phys Lett 2002; 356:189-193. [10] Hongjie D. Nanotube Growth and Characterization. In: Dresselhaus MS, Dresselhaus G, Avouris P, editor. Carbon Nanotubes synthesis structure properties and applications, Springer, 2001; 29. 154 [11] Baker RTK. Electron microscopy studies of the catalytic growth of carbon filaments. In: Rigueriredo JL, Bernardo CA, Baker RTK, Huttiner KJ, editor. Carbon Fiber Filaments and Composites, Kluwer Academic Publishers, 1990; 405. [12] Tibbetts GG. Physical modeling of carbon filament growth. In: Rigueriredo JL, Bernardo CA, Baker RTK, Huttiner KJ, editor. Carbon Fiber Filaments and Composites, Kluwer Academic Publishers, 1990; 525. [13] Sinnott SB, Andrews R, Qian D, Rao AM, Mao Z, Derbyshire F, et al. Model of carbon nanotube growth through chemical vapor deposition. Chem Phys Lett 1999; 315:25-30. [14] Hongjie D, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 1996; 260:471-5. [15] Ding F, Ros’en A, Bolton K, The role of the catalytic particle temperature gradient for SWNT growth from small particles. Chem Phys Lett 2004; 393:309-13. [16] Spretz R, Marchetti SC, Ulla MA, Lombardo EA. Fe/MgO Formulations for the Catalytic Combustion of Methane. J Cata 2000, 194:167-74. [17] Jung KD, Joo OS, Cho SH, Han SH. Catalytic wet oxidation of H2S to sulfur on Fe/MgO catalyst. Appl Catal A 2003, 240:235-41. [18] Jung KD, Joo OS, Kim CS. Study on the structure of Fe/MgO catalysts for H2S wet oxidation. Catal Lett 2002, 84:53-7 [19] Shen J, Guang B, Tu M, Chen Y. Preparation and characterization of Fe/MgO catalysts obtained from hydrotalcite-like compounds. Catal Today1996, 30:77 -82. 155 [20] Ge X, Li M, Shen J. The Reduction of Mg-Fe-Oand Mg-Fe-Al-O Complex Oxides Studied by Temperature-Programmed Reduction Combined with in Situ Mössbauer Spectroscopy. J Solid State Chem2001, 161:38-44. [21] Ferreira OP, Alves OL, Gouveia DX, Filho AGS, Filho JM, et al. Thermal decomposition and structural reconstruction effect on Mg–Fe-based hydrotalcite compounds. J Solid State Chem2004, 177:3058-69. [22] Zaneva S, Stanimirova T. Crystal chemistry, classification position and nomenclature of layered double hydroxides. 2004 Annual Scientific Conference. Bulgarian Geologlcal Society, 2004. [23] http://www.vscht.czmin en_veda_apmin1.htm [24] Jing K, Alan MC, Hongjie D. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 1998; 292:567-74. [25] Colomer JF, Bister G, Willems I, KÓnya Z, Nagy B, et al. Synthesis of single-wall carbon nanotubes by catalytic decomposition of hydrocarbons. Chem Comm1999:1343-4. [26] Colomer JF, Stephan C, Lefrant S, Tendeloo GV, Nagy JB. Large-scale synthesis of single-wall carbon nanotubes by catalyticchemical vapor deposition (CCVD) method. Chem Phys Lett 2000; 317:83-9. [27] Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE. Controlled production of single-wall carbon nanotubes bycatalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem Phys Lett 2000; 317:497-503. [28] Herrera JE, Balzano L, Borgna A, Alvarez WE, Resasco DE.Relationship between the Structure/Composition of Co–Mo Catalystsand Their Ability to Produce Single-Walled Carbon Nanotubesby CO Disproportionation. J Catal 2001; 204:129-45. 156 [29] Alvarez WE, Kitiyanan B, Borgna A, Resasco DE. Synergism of Co and Mo in the catalytic production of single wall carbon nanotubes by decomposition of CO. Carbon 2001;39:547-58. [30] Shajahan Md, Mo YH, Fazle Kibria AKM, Kim MJ, Nahm KS.High growth of SWNTs and MWNTs from C2H2 decomposition over Co–Mo/MgO catalysts. Carbon 2004;42:2245-53. [31] Hafner JH, Bronikowski MJ, Azamian BR, Nikolaev P, Smalley RE, et al. Catalytic growth of single-wall carbon nanotubes from metal particles. Chem Phys Lett 1998; 296:195-202. [32] Alan MC, Jeffrey AR, Jing K, Hongjie D.Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes. J Phys Chem B 1999; 103:6484-92. [33] Hornyak GL, Grigorian L, Dillon AC, Parilla PA, Jones KM, Heben MJ.A Temperature Window for Chemical Vapor Decomposition Growth of Single-Wall Carbon Nanotubes. J Phys Chem B 2002; 106:2821-25. [34] Harutyunyan AR, Pradhan BK, Kim UJ, Chen G, Eklund PC. CVD Synthesis of Single Wall Carbon Nanotubes under “Soft” Conditions. Nano Lett 2002; 2(5):525-30. [35] Liu BC, Lyu SC, Lee TJ, Choi SK, Lee CJ, et al. Synthesis of single- and double-walled carbon nanotubes by catalytic decomposition of methane. Chem Phys Lett 2003; 373:475-9. [36] Lyu SC, Liu BC, Lee TJ, Liu ZY, Lee CJ, et al. Synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of C2H2. Chem Comm 2003:734-5. [37] Lyu SC, Lee TJ, Yang CW, Lee CJ. Synthesis and characterization of high-quality double-walled carbon nanotubes by catalytic decomposition of 157 alcohol. Chem Comm 2003:1404-5. [38] Liu BC, Lyu SC, Jung SI, Kang HK, Lee CJ, et al. Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe–Mo/MgO catalyst. Chem Phys Lett 2004; 383:104-8. [39] Lyu SC, Liu BC, Lee SH, Park CY, Lee CJ, et al. Large-Scale Synthesis of High-Quality Single-Walled Carbon Nanotubes by Catalytic Decomposition of Ethylene. J Phys Chem B 2004; 108:1613-6. [40] Lyu SC, Liu BC, Lee SH, Park CY, Lee CJ, et al. Large-Scale Synthesis of High-Quality Double-Walled Carbon Nanotubes by Catalytic Decomposition of n-Hexane. J Phys Chem B 2004; 108:2192-4. [41] Eklund PC, Holden JM, Jishs RA. Vibrational modes of cabon nanotubes; spectroscopy and theory. carbon 1995; 33(7):959-72. [42] Wang Y, Alsmeyer DC, McCreery RL. Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra. Chem Mater 1990; 2:557-63. [43] Bendiab N, Almairac R, Paillet M, Sauvajol JL.About the profile of the tangential modes in single-wall carbon nanotube bundles. Chem Phys Lett 2004; 383:104-8. [44] Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Smalley RB. Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. Science 2004; 298:2361-6. [45] Bandow S, Chen G, Sumanasekera GU, Iijima S, Eklund PC, et al. Diameter-selective resonant Raman scattering in double-wall carbon nanotubes. Phys Rev B 2002; 66:075416-1-8. [46] Alvarez L, Righi A, Guillard T, Rols S, Sauvajol JL, et al. Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes. Chem 158 Phys Lett 2000; 316:186-90. [47] Sauvajol JL, Anglaret E, Rols S, Alvarez L. P honons in single wall carbon nanotube bundles. Carbon 2002; 40:1697-714. [48] Feng Y, Zhou G, Wang G, Qu M, Yu Z. Removal of some impurities from carbon nanotubes. Chem Phys Lett 2003; 375:645-8. [49] Herrera JE, Resasco DE. In situ TPO/Raman to characterize single-walled carbon nanotubes. Chem Phys Lett 2003; 376:302-9. [50] Li F, Wang Y, Wang D, Wei F. Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon 2004; 42:2375-83. [51] Li J, Zhang Y. A simple purification for single-walled carbon nanotubes.Phys E 2005; 28:309-12. [52] Thomazeau C, Martin V, Afanasiev P. Effect of support on the thermal decomposition of (NH4)6Mo7O24.4H2Oin the inert gas atmosphere. Appl Catal A 2000; 199:61-72. [53] Lee EK, Jung KD, Joo OS, Shul YG. Catalytic activity of Mo/MgO catalyst in the wet oxidation of H2S to sulfur at room temperature. Appl Catal A 2004; 268:83-8. [54] Li Y, Zhang X, Tao X, Xu J,Chen F, Huang W, Liu F.Growth mechanism of multi-walled carbon nanotubes with or without bundles by catalytic deposition of methane on Mo/MgO. Chem Phys Lett 2004; 386:105-10. [55] Lee EK, Jung KD, Joo OS, Shul YG. Influence of iron precursors on catalytic wet oxidation of H2S to sulfur over Fe/MgO catalysts. J Mole Cata A 2005, 239:64-7. [56] Frost Ry, Musumeci AW, Bostrom T, Adebajo MO, Weier ML, Martens W.Thermal decomposition of hydrotalcite with chromate, molybdate or sulphate in the interlayer. Thermochimica Acta 2005, 429:179-87. 159 [57] Cheng HM, Li F, Su G, Pan HY, He LL, Sun X, Dresselhaus MS.Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Apl Phys Lett 1998, 72:3282-84. [58] Tibbetts GG, Balogh MP.Increase in yield of carbon fibres grown above the iron/carbon eutectic. Carbon 1999, 37:241-7. [59] Zhu HW, Xu DH, Wei BQ, Vajtai, Ajayan PM.Direct Synthesis of Long Single-Walled Carbon Nanotube Strands. Science 2002; 296:884-6. [60] Zhu H, Li X, Xu C, Wu D, Co-synthesis of single-walled carbon nanotubes and carbon fibers. Mate Res Bul 2002; 37:177-83. [61] Ci L, Rao Z, Zhou Z, Tang D, Yan X, et al.Double wall carbon nanotubes promoted by sulfur in afloating iron catalyst CVD system.Chem Phys Lett 2002; 359:63-7. [62] Yang QH, Bai S, Fournier T, Li F, Wang G, et al. Direct growth of macroscopic fibers composed of large diameter SWNTs by CVD. Chem Phys Lett 2003; 370:274-9. [63] Wei J, Jiang B, Wu D, Wei B. Large-Scale Synthesis of Long Double-Walled Carbon Nanotubes.J Phys Chem B 2004; 108:8844-7. [64] Tibbetts GG, Bernardo CA, Gorkiewicz DW, Alig R. ROLE OF SULFUR IN THE PRODUCTION OF CARBONFIBERS IN THE VAPOR PHASE. Carbon 1994, 32:569-76.
|