跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王聖權
研究生(外文):Sheng-Chuan Wang
論文名稱:使用Fe-Mo/MgO催化劑以化學氣相沉積法成長奈米碳管
論文名稱(外文):Synthesis of Carbon Nanotubes using Fe-Mo/MgOCatalysts by Chemical Vapor Deposition
指導教授:曾信雄曾信雄引用關係
指導教授(外文):Shinn-Shyong Tzeng
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:159
中文關鍵詞:雙層奈米碳管奈米碳管化學氣相沉積催化劑Fe-Mo/MgO
外文關鍵詞:catalystCNTsCVDDWNTsFe-Mo/MgO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管於1991 年被發現後,由於具有優越的性質以及高的應用潛力使其被廣
泛的研究,非常多的製程被研發成長奈米碳管。本研究使用載體催化劑以化學氣相
沉積法成長奈米碳管,此製程中金屬粒子的分散以及顆粒大小相當的重要,大顆的
金屬粒子是不利於奈米碳管成長的。吾人於催化劑中添加Mo,試圖增加催化劑的
分散,提高奈米碳管的產量。此研究中,使用MgO 含浸金屬鹽類溶液製備催化劑,
並且使用兩種不同的鹽類(硝酸鐵或硫酸鐵)製備Fe 的催化劑。
Fe(N)/MgO 催化劑的研究方面,於固定金屬與載體的莫耳比例下製備不同鉬含
量的Fe(N)-Mo/MgO 催化劑。此部分探討的製程參數包括 Mo 含量改變、煆燒催化
劑以及成長溫度。實驗結果顯示,於催化劑中添加Mo 似乎可以增加產量,但是
FeMoMgO 催化劑中的鉬含量越高,產物中多層管或碳纖維的含量也跟著變多。儘
管如此,Mo 還是幫助了鐵含量較高的相於載體上的分散,尤其是在較高的成長溫
度或經過煆燒的催化劑。吾人認為Mo 與MgO 形成特定的化合物抑制了鐵含量較
高相的聚集,因而得到高的碳管產量。且吾人發現900℃為較適合的成長溫度,此
溫度下Fe(N)-Mo/MgO 的產物有較好的品質(較少的碳纖維含量以及較小管徑分
布),且Fe(N) /MgO 無須添加Mo 就可成長出高品質的奈米碳管。
Fe(S)/MgO 催化劑的研究方面, 探討催化劑添加Mo 的影響以及催化劑濃度的
影響。結果顯示,Fe(S)Mo101MgO 成長奈米碳管有較高的效率。於FE-SEM 觀察,
奈米碳管管束完全包覆了催化劑的表面。產物的碳含量高達23wt%,且大部分為雙
層奈米碳管。而使用Fe(S)/MgO 催化劑(無添加Mo)成長奈米碳管,當催化劑濃度由
2.5wt%提高至7wt%時,奈米碳管的產量迅速的降低。Fe(S)MgO 可在低溫下大量
Since carbon nanotubes (CNTs) were discovered in 1991, they have been widely
studied due to their excellent properties and many potential applications, and several preparation methods have been developed to synthesize CNTs. In this study, wesynthesize CNTs by chemical vapor decomposition using a supported catalyst. The metal particle dispersion and size are crucial to this progress. A large metal particle is nfavorable to the CNT growth. We added Mo into the catalyst in an attempt to assist dispersion of catalysts and to increase CNTs yield. Catalysts were prepared by impregnating MgO in malt salt solution and two kinds of salt precursors (Fe(NO3)3•9H2O or Fe2(SO4)3•14H2O) were used to prepare Fe based catalysts。
For the Fe(N)/MgO catalyst, the molar ratio between metal and support was kept in constant to prepare a series Fe(N)-Mo/MgO catalysts with different molybdenum contents. The processing parameters included Mo content、catalysts calcination and deposition temperature. Experimental results indicated that addition of Mo in the catalyst increased the yield, but the more molybdenum content in Fe(N)-Mo/MgO catalysts, the more MWNTs or CNFs there are in the product. Mo assists the dispersion of Fe catalyst especially in higher decomposition temperature or catalysts with calcination. We consider
that Mo and MgO form a particular compound to constrain Fe phase from aggregating, leading to high yield of carbon nanotubes. We found that 900℃ is the more suitable decomposition temperature in which the products of Fe(N)-Mo/MgO have higher quality (lower CNFs content and smaller diameter distribution of CNTs) and high quality CNTs can be synthesized using Fe(N)/MgO catalyst without Mo added.
For the Fe(S)/MgO catalysts, we studied the effects of Mo addition catalyst and the catalyst concentration. Results indicated that Fe(S)Mo101MgO catalyst seemed to be more efficient to synthesis carbon nanotubes. From the FE-SEM image, entire catalyst surface was fully covered with carbon nanotube bundles. The total carbon yield was over 23wt%, and the product is mainly consists of DWNTs. For Fe(S)/MgO catalysts (without Mo added), the yield of CNTs decreased rapidly when the catalyst concentration
increased from 2.5wt% to 7wt%. CNTs can be grown with a great quantity at low
temperature using Fe(S)Mgo catalyst with a carbon yield of 33.2wt%. The products have a pillar like morphology, which consists of CNT bundle of DWNTs.
TABLES OF CONTENTS
ENGLISH ABSTRACT..................................................Ι
CHINESE ABSTRACT..................................................Ⅲ
TABLES OF CONTENTS……………………………………………………………V
LIST OF FIGURES……………………………………………………………………Ⅸ
CHAPTER
I INTRODUCTION
1.1 Introduction.................................................1
1.2 The purpose and reason of research ..........................1
1.3 Overview of thesis ..........................................1
II LITERATURE REVIEW
2.1 The introduction of CNTs ....................................3
2.2 The growth mechanism of CNTs ................................4
2.3 Fe/MgO catalyst research…………………………………….…………5
2.4 Catalyst by impregnation for CNTs growth…………………………6
2.4.1 The Early investigation……………………………………………6
2.4.2 Co-Mo catalyst……………………………………………………..7
2.4.3 Fe-Mo catalyst…………………………………………….………..8
2.5 Raman analysis of CNTs……………………..………………………..9
2.6 Oxidization behavior of CNTs………………………………………..9
III EXPERIMENTAL PROCEDURE
3.1 Flow chart ....................................................14
3.2 Experimental procedure.......................................15
3.2.1 Equipment………………………………………………...………15
3.2.2 Catalyst preparation……………...………………………………15
3.2.3 CNTs growth………………………..……………………………..15
3.3 Instrument analysis………….………………………………………….16
3.3.1 Catalyst characterization….……………………………………..16
3.3.1.1 High power XRD………………………………...………..16
3.3.1.2 Thermal Gravity Analyzer……………………………….16
3.3.2 Products characterization………………………………….…….16
3.3.2.1 Field-Emission Scan Electro Microscope……….….……16
3.3.2.2 High Resolution Transmission Electron Microscope…...17
3.3.2.3 Thermal Gravity Analyzer…………….…………………17
3.3.2.4 Raman spectrum…………….……………………………17
IV RESULTS AND DISCUSSIONS
4.1 The catalysts prepared with ferric nitrate……...……………………..19
4.1.1 The effect of Mo content………………………………….………19
4.1.1.1 Morphology……………………….………………………19
4.1.1.2 Raman spectra analysis…………………………………..20
4.1.1.3 TGA-DSC analysis………………………………..………20
4.1.1.4 HR-TEM analysis………………….……………………..21
4.1.1.5 Analysis Results……………………………………..…….21
4.1.2 The effect of catalyst calcination ………………………………..27
4.1.2.1 Morphology……………………………………………….27
4.1.2.2 TGA-DSC analysis………………………………………..27
4.1.2.4 HR-TEM analysis…………………..…………………….28
4.1.2.4 Analysis Results………………………………...…………28
4.1.3 The role of Mo…………………………………………….………34
4.1.3.1 Catalyst structure analysis…...…………………………..34
4.1.3.2 Morphology……………………………………………….34
4.1.3.3 HR-TEM analysis……………………………………...…35
4.1.3.4 Analysis Results…………………………….……………..35
4.1.4 The effect of deposition temperature ……………………..…….40
4.1.4.1 Catalyst structure analysis……...………………………..40
4.1.4.2 Morphology………………………….……………………41
4.1.4.3 Raman spectra analysis…………..………………………41
4.1.4.4 TGA-DSC analysis………………………………………..42
4.1.4.5 HR-TEM analysis……………………………….………..42
4.1.3.4 Analysis Results……………….…………………………..43
4.2 The catalysts prepared with ferric sulfate………………….…………54
4.2.1 The effect of Mo addition………………………………………...54
4.2.1.1 Catalyst structure analysis…………………………...…..54
4.2.1.2 Morphology……………...………………………………..54
4.2.1.3 Ramen analysis………..…………………………………..55
4.2.1.4 TGA-DTG analysis……………………………………….55
4.2.1.5 HR-TEM analysis…………………...……………………55
4.2.1.6 Analysis Results…………………………………..……….56
4.2.2 The effect of metal concentration………………………….…….62
4.2.2.1 Morphology……………………………………………….62
4.2.2.2 Ramen analysis……………………………………………62
4.2.2.3 TGA-DTG analysis………….……………………………63
4.2.2.4 HR-TEM analysis………………………..……………….63
4.2.2.5 Analysis Results…………………………………...………63
4-2-3 The effect of deposition temperature and role of sulfur…….…68
4-2-3-1 TGA-DSC analysis of catalyst……………………...……68
4-2-3-2 Morphology…………………...………………………….68
4-2-3-3 Lower deposition temperature products analysis……...68
4-2-3-4 Analysis Results…………………………………..………69
V CONCLUSIONS………………………………………………………….75
References……………………………………………………………………..………153
[1] Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE.C60: Buckminsterfullerene.
Nature 1985; 318(12):132-3.
[2] Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(7):56-8.
[3] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter.Nature
1993; 363(17):603-5.
[4] Dresselhaus MS, Dresselhaus G, Saito R. Physics of carbon nanotubes.Carbon
1995; 33(7):883-91.
[5] Tarasov BP, Muradyan VE, Shul’ga YM, Krinichnaya EP, Lai HJ et al. S ynthesis
of carbon nanostructures by arc evaporation of graphite rods with Co–Ni and
YNi catalysts. Carbon 2003; 41:1357-64.
[6] Yao M, Liu B, Zou Y, Wang L, Sundqvist et al. Synthesis of single-wall carbon
nanotubes and long nanotube ribbons with Ho/Ni as catalyst by arc discharge.
Carbon 2005; 43:2894-901.
[7] Yudasaka M, Ichihashi T, Komatsu T, Iijima S. Single-wall carbon nanotubes
formed by a single laser-beam pulse. Chem Phys Lett 1999; 299:91-6.
[8] Nishide D, Kataura H, Suzuki S, Tsukagoshi K, Aoyagi Y, Achiba Y.
High-yield production of single-wall carbon nanotubes in nitrogen gas. Chem
Phys Lett 2003; 372:45-50.
[9] Smiljanic O, Stansfield BL, Dodelet JP, Serventi A, D’esilets S.
Gas-phase synthesis of SWNT by an atmospheric pressure plasma jet.
Chem Phys Lett 2002; 356:189-193.
[10] Hongjie D. Nanotube Growth and Characterization. In: Dresselhaus MS,
Dresselhaus G, Avouris P, editor. Carbon Nanotubes synthesis structure
properties and applications, Springer, 2001; 29.
154
[11] Baker RTK. Electron microscopy studies of the catalytic growth of carbon
filaments. In: Rigueriredo JL, Bernardo CA, Baker RTK, Huttiner KJ, editor.
Carbon Fiber Filaments and Composites, Kluwer Academic Publishers, 1990;
405.
[12] Tibbetts GG. Physical modeling of carbon filament growth. In: Rigueriredo JL,
Bernardo CA, Baker RTK, Huttiner KJ, editor. Carbon Fiber Filaments and
Composites, Kluwer Academic Publishers, 1990; 525.
[13] Sinnott SB, Andrews R, Qian D, Rao AM, Mao Z, Derbyshire F, et al. Model of
carbon nanotube growth through chemical vapor deposition. Chem Phys Lett
1999; 315:25-30.
[14] Hongjie D, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE.
Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon
monoxide. Chem Phys Lett 1996; 260:471-5.
[15] Ding F, Ros’en A, Bolton K, The role of the catalytic particle temperature
gradient for SWNT growth from small particles. Chem Phys Lett 2004;
393:309-13.
[16] Spretz R, Marchetti SC, Ulla MA, Lombardo EA. Fe/MgO Formulations for the
Catalytic Combustion of Methane. J Cata 2000, 194:167-74.
[17] Jung KD, Joo OS, Cho SH, Han SH. Catalytic wet oxidation of H2S to sulfur on
Fe/MgO catalyst. Appl Catal A 2003, 240:235-41.
[18] Jung KD, Joo OS, Kim CS. Study on the structure of Fe/MgO catalysts for H2S
wet oxidation. Catal Lett 2002, 84:53-7
[19] Shen J, Guang B, Tu M, Chen Y. Preparation and characterization of Fe/MgO
catalysts obtained from hydrotalcite-like compounds. Catal Today1996, 30:77
-82.
155
[20] Ge X, Li M, Shen J. The Reduction of Mg-Fe-Oand Mg-Fe-Al-O Complex
Oxides Studied by Temperature-Programmed Reduction Combined with in Situ
Mössbauer Spectroscopy. J Solid State Chem2001, 161:38-44.
[21] Ferreira OP, Alves OL, Gouveia DX, Filho AGS, Filho JM, et al. Thermal
decomposition and structural reconstruction effect on Mg–Fe-based hydrotalcite
compounds. J Solid State Chem2004, 177:3058-69.
[22] Zaneva S, Stanimirova T. Crystal chemistry, classification position and
nomenclature of layered double hydroxides. 2004 Annual Scientific Conference.
Bulgarian Geologlcal Society, 2004.
[23] http://www.vscht.czmin en_veda_apmin1.htm
[24] Jing K, Alan MC, Hongjie D. Chemical vapor deposition of methane for
single-walled carbon nanotubes. Chem Phys Lett 1998; 292:567-74.
[25] Colomer JF, Bister G, Willems I, KÓnya Z, Nagy B, et al. Synthesis of
single-wall carbon nanotubes by catalytic decomposition of hydrocarbons. Chem
Comm1999:1343-4.
[26] Colomer JF, Stephan C, Lefrant S, Tendeloo GV, Nagy JB. Large-scale synthesis
of single-wall carbon nanotubes by catalyticchemical vapor deposition (CCVD)
method. Chem Phys Lett 2000; 317:83-9.
[27] Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE. Controlled production of
single-wall carbon nanotubes bycatalytic decomposition of CO on bimetallic
Co–Mo catalysts. Chem Phys Lett 2000; 317:497-503.
[28] Herrera JE, Balzano L, Borgna A, Alvarez WE, Resasco DE.Relationship
between the Structure/Composition of Co–Mo Catalystsand Their Ability to
Produce Single-Walled Carbon Nanotubesby CO Disproportionation. J Catal
2001; 204:129-45.
156
[29] Alvarez WE, Kitiyanan B, Borgna A, Resasco DE. Synergism of Co and Mo in
the catalytic production of single wall carbon nanotubes by decomposition of CO.
Carbon 2001;39:547-58.
[30] Shajahan Md, Mo YH, Fazle Kibria AKM, Kim MJ, Nahm KS.High growth of
SWNTs and MWNTs from C2H2 decomposition over Co–Mo/MgO catalysts.
Carbon 2004;42:2245-53.
[31] Hafner JH, Bronikowski MJ, Azamian BR, Nikolaev P, Smalley RE, et al.
Catalytic growth of single-wall carbon nanotubes from metal particles. Chem
Phys Lett 1998; 296:195-202.
[32] Alan MC, Jeffrey AR, Jing K, Hongjie D.Large Scale CVD Synthesis of
Single-Walled Carbon Nanotubes. J Phys Chem B 1999; 103:6484-92.
[33] Hornyak GL, Grigorian L, Dillon AC, Parilla PA, Jones KM, Heben MJ.A
Temperature Window for Chemical Vapor Decomposition Growth of Single-Wall
Carbon Nanotubes. J Phys Chem B 2002; 106:2821-25.
[34] Harutyunyan AR, Pradhan BK, Kim UJ, Chen G, Eklund PC. CVD Synthesis of
Single Wall Carbon Nanotubes under “Soft” Conditions. Nano Lett 2002;
2(5):525-30.
[35] Liu BC, Lyu SC, Lee TJ, Choi SK, Lee CJ, et al. Synthesis of single- and
double-walled carbon nanotubes by catalytic decomposition of methane.
Chem Phys Lett 2003; 373:475-9.
[36] Lyu SC, Liu BC, Lee TJ, Liu ZY, Lee CJ, et al. Synthesis of high-quality
single-walled carbon nanotubes by catalytic decomposition of C2H2. Chem
Comm 2003:734-5.
[37] Lyu SC, Lee TJ, Yang CW, Lee CJ. Synthesis and characterization of
high-quality double-walled carbon nanotubes by catalytic decomposition of
157
alcohol. Chem Comm 2003:1404-5.
[38] Liu BC, Lyu SC, Jung SI, Kang HK, Lee CJ, et al. Single-walled carbon
nanotubes produced by catalytic chemical vapor deposition of acetylene over
Fe–Mo/MgO catalyst. Chem Phys Lett 2004; 383:104-8.
[39] Lyu SC, Liu BC, Lee SH, Park CY, Lee CJ, et al. Large-Scale Synthesis of
High-Quality Single-Walled Carbon Nanotubes by Catalytic Decomposition of
Ethylene. J Phys Chem B 2004; 108:1613-6.
[40] Lyu SC, Liu BC, Lee SH, Park CY, Lee CJ, et al. Large-Scale Synthesis of
High-Quality Double-Walled Carbon Nanotubes by Catalytic Decomposition of
n-Hexane. J Phys Chem B 2004; 108:2192-4.
[41] Eklund PC, Holden JM, Jishs RA. Vibrational modes of cabon nanotubes;
spectroscopy and theory. carbon 1995; 33(7):959-72.
[42] Wang Y, Alsmeyer DC, McCreery RL. Raman Spectroscopy of Carbon Materials:
Structural Basis of Observed Spectra. Chem Mater 1990; 2:557-63.
[43] Bendiab N, Almairac R, Paillet M, Sauvajol JL.About the profile of the
tangential modes in single-wall carbon nanotube bundles. Chem Phys Lett 2004;
383:104-8.
[44] Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Smalley RB.
Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. Science
2004; 298:2361-6.
[45] Bandow S, Chen G, Sumanasekera GU, Iijima S, Eklund PC, et al.
Diameter-selective resonant Raman scattering in double-wall carbon nanotubes.
Phys Rev B 2002; 66:075416-1-8.
[46] Alvarez L, Righi A, Guillard T, Rols S, Sauvajol JL, et al. Resonant Raman study
of the structure and electronic properties of single-wall carbon nanotubes. Chem
158
Phys Lett 2000; 316:186-90.
[47] Sauvajol JL, Anglaret E, Rols S, Alvarez L. P honons in single wall carbon
nanotube bundles. Carbon 2002; 40:1697-714.
[48] Feng Y, Zhou G, Wang G, Qu M, Yu Z. Removal of some impurities from carbon
nanotubes. Chem Phys Lett 2003; 375:645-8.
[49] Herrera JE, Resasco DE. In situ TPO/Raman to characterize single-walled
carbon nanotubes. Chem Phys Lett 2003; 376:302-9.
[50] Li F, Wang Y, Wang D, Wei F. Characterization of single-wall carbon nanotubes
by N2 adsorption. Carbon 2004; 42:2375-83.
[51] Li J, Zhang Y. A simple purification for single-walled carbon nanotubes.Phys E
2005; 28:309-12.
[52] Thomazeau C, Martin V, Afanasiev P. Effect of support on the thermal
decomposition of (NH4)6Mo7O24.4H2Oin the inert gas atmosphere. Appl Catal A
2000; 199:61-72.
[53] Lee EK, Jung KD, Joo OS, Shul YG. Catalytic activity of Mo/MgO catalyst in
the wet oxidation of H2S to sulfur at room temperature. Appl Catal A 2004;
268:83-8.
[54] Li Y, Zhang X, Tao X, Xu J,Chen F, Huang W, Liu F.Growth mechanism of
multi-walled carbon nanotubes with or without bundles by catalytic deposition of
methane on Mo/MgO. Chem Phys Lett 2004; 386:105-10.
[55] Lee EK, Jung KD, Joo OS, Shul YG. Influence of iron precursors on catalytic wet
oxidation of H2S to sulfur over Fe/MgO catalysts. J Mole Cata A 2005, 239:64-7.
[56] Frost Ry, Musumeci AW, Bostrom T, Adebajo MO, Weier ML, Martens
W.Thermal decomposition of hydrotalcite with chromate, molybdate or sulphate
in the interlayer. Thermochimica Acta 2005, 429:179-87.
159
[57] Cheng HM, Li F, Su G, Pan HY, He LL, Sun X, Dresselhaus MS.Large-scale and
low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis
of hydrocarbons. Apl Phys Lett 1998, 72:3282-84.
[58] Tibbetts GG, Balogh MP.Increase in yield of carbon fibres grown above the
iron/carbon eutectic. Carbon 1999, 37:241-7.
[59] Zhu HW, Xu DH, Wei BQ, Vajtai, Ajayan PM.Direct Synthesis of Long
Single-Walled Carbon Nanotube Strands. Science 2002; 296:884-6.
[60] Zhu H, Li X, Xu C, Wu D, Co-synthesis of single-walled carbon nanotubes and
carbon fibers. Mate Res Bul 2002; 37:177-83.
[61] Ci L, Rao Z, Zhou Z, Tang D, Yan X, et al.Double wall carbon nanotubes
promoted by sulfur in afloating iron catalyst CVD system.Chem Phys Lett 2002;
359:63-7.
[62] Yang QH, Bai S, Fournier T, Li F, Wang G, et al. Direct growth of macroscopic
fibers composed of large diameter SWNTs by CVD. Chem Phys Lett 2003;
370:274-9.
[63] Wei J, Jiang B, Wu D, Wei B. Large-Scale Synthesis of Long Double-Walled
Carbon Nanotubes.J Phys Chem B 2004; 108:8844-7.
[64] Tibbetts GG, Bernardo CA, Gorkiewicz DW, Alig R. ROLE OF SULFUR IN
THE PRODUCTION OF CARBONFIBERS IN THE VAPOR PHASE. Carbon
1994, 32:569-76.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top