跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳泓輝
研究生(外文):Hung-Hui Wu
論文名稱:加入8YSZ(8mol%Y2O3and92mol%ZrO2)改善Ni0.3Cu0.3Co0.06Mn2.34O4NTC熱敏電阻時效穩定性
論文名稱(外文):Add 8YSZ(8mol%Y2O3 and 92mol%ZrO2) to improve aging of Ni0.3Cu0.3Co0.06Mn2.34O4 NTC thermistor
指導教授:胡毅胡毅引用關係林和龍
指導教授(外文):Yi. HuHur-Lon Lin
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:95
中文關鍵詞:熱敏電阻元件低阻值NTC
外文關鍵詞:8YSZ(8mol%Y2O3 and 92mol%ZrO2)Negative Temperature CoefficienceNTC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:1
中 文 摘 要

具有尖晶石結構之(Mn,Ni)3O4氧化物陶瓷體。其電阻會隨著溫度上升而急速下降,此特性被運用於負溫度係數(Negative Temperature Coefficience,NTC)熱敏電阻元件;(Mn,Ni)3O4之NTC材料屬於高阻值電阻體,在工業應用範圍上有其限制,故業界致力於開發低阻值NTC以期增加應用性。業界的作法是在以(Mn,Ni)3O4為主之材料上添加Cu取代部份Ni以達到降低阻值之效果,但由文獻得知雖然Cu的加入的確能降低阻值,不過卻造成在高溫環境下使用時其阻值穩定性變差的問題;故本實驗採用加入與(Mn,Ni,Cu)3O4同為cubic相之8YSZ(8mol%Y2O3與92mol%ZrO2),使得8YSZ固溶於(Mn,Ni,Cu)3O4晶體結構中,進而改變晶體結構增加其在高溫環境下使用之穩定性,由實驗結果得知當添加量在1%與3%的確使得(Mn,Ni)3O4添加Cu之問題明顯獲得改善。
Abstract
The (Mn,Ni)3O4 oxide ceramic body has spinel structure. Its resistance will drop rapidly as temperature rises; this characteristic is applied to NTC (Negative Temperature Coefficience) thermal sensitive thermistor device. The (Mn,Ni)3O4 NTC material belongs to the high value resistance of thermistor, that is limited on the range of application of industry. Therefore, industries make efforts in developing low value resistance NTC to increase its application. The way of industries use is add Cu and replace some Ni to the main material, (Mn,Ni)3O4, in order to get the result of reducing the value of resistance. Learned by documents though Cu is it can reduce the value of resistance, the problem is its stability become poor under the high-temperature environment. This experiment is adopted and joined with (Mn,Ni,Cu)3O4 is all 8YSZ ( 8mol% Y2O3 and 92mol% ZrO2) the same of cubic phase, to make the solid solution of 8YSZ dissolve into (Mn,Ni,Cu)3O4; and then change its crystal structure and increase its stability used under high-temperature environment. The experimental result leads to the conclusion that acts as the adding amount of 3% and 1% 8YSZ really make the problem of adding Cu to (Mn,Ni)3O4 is being improved obviously.
CONTENTS

ACKNOWLEDGEMENTS I
ENGLISH ABSTRACT I
CHINESE ABSTRACT II
CONTENTS III
TABLE OF CONTENTS VI
FIGURE OF CONTENTS VII
CHAPTER 1 INTRODUCTION 1
1.1 PREFACE 1
1.2 CLASSIFICATION OF NTC MATERIALS [13] 2
1.3 OBJECTIVES OF THE STUDY 2
CHAPTER 2 LITERATURE SURVEY 4
2.1 CRYSTAL STRUCTURE OF AB2O4[6] 4
2.2 ELECTRICAL CONDUCTIVITY MECHANISM [6] 5
2.3 SPINEL PHASE 7
2.4 METHOD OF POWDER COMPOSITION 8
2.4.1Solid-state reaction method [14,15] 8
2.5 FUNDAMENTAL CHARACTERISTICS OF NTC 8
2.5.1 Resistance-temperature characteristic (Fig.1) 8
2.5.2 Material constant(B) 9
2.5.3 Temperature coefficient of resistance (α) 10
2.5.4 Voltage-current characteristics 10
2.5.5 Dissipation constant(K) 10
2.5.6 Thermal time constant(τ) 11
2.6 THE APPLICATION OF NTC [6] 11
2.6.1 Temperature measurement and control 11
2.6.2 Temperature compensation 11
2.6.3 Miscellaneous fields of applications 11
CHAPTER 3 EXPERIMENTAL PROCEDURES 13
3.1 THE POWDER PREPARATION 13
3.1.1 Composition of the powder 13
3.1.2 Solid-state reaction 13
3.2 TRADITIONAL SINTERING PROCESSES 15
3.2.l Forming 15
3.2.2 PVA removing 15
3.2.3 Sintering 15
3.2.4 Electrode drying 15
3.3 ANALYTIC SETS 16
3.3.1 High energy XRD 16
3.3.2 XRD 16
3.3.2 DTA/TGA 16
3.3.4 Morphology by SEM 16
3.4 PROPERTIES AND CHARACTERISTICS MEASUREMENT 16
3.4.l Density measurement 16
3.4.2 Resistance-temperature characteristics 17
3.4.3 The stability measurement (△R/R) 17
CHAPTER 4 RESULT AND DISCUSSION 18
4.1 THE RELATIONSHIP BETWEEN PHASE STRUCTURE OF X-RAY AND ELECTRICITY 18
4.1.l Ni-Mn system 18
4.1.2 Ni-Mn-Cu-Co system 18
4.1.3 8YSZ system [19,20,21,22,23] 20
4.1.4 Adding the 8YSZ system into Mn-Ni-Cu-Co-O 20
4.2 DTA/TGA TEMPERATURE RISE PROCESS CHANGE 22
4.2.1 Mn-Ni-Cu-Co-O system 22
4.2.2 Adding 8YSZ system into Mn-Ni-Cu-Co-O 22
4.3 EFFECT ON ELECTRICITY BY METALLOGRAPH AND MICROCOSMIC TISSUE 23
4.3.l Mn-Ni-Cu-Co-O system 23
4.3.2 Addition of the 8YSZ system into the Mn-Ni-Cu-Co-0 23
4.4 STABILITY (△R/R) 24
CHAPTER 5 CONCLUSION 26
CHAPTER 6 REFERENCE 27


TABLE OF CONTENTS

Table 1 Field of Application of NTC thermistors 30
Table 2 Sintering of Ni0.66Mn2.34O4 at 1250℃ for 2 hr 31
Table 3 Ni0.3Cu0.3Co0.06Mn2.34O4 containing different amount of 8YSZ 32
Table 4 Resistance Properties of Ni0.3Cu0.6Co0.06Mn2.34O4 containing different amount of 8YSZ 33


FIGURE OF CONTENTS
Fig. 1 Resistance-temperature Characteristics of various thermistors 34
Fig. 2 Spinel Crystallographic structure 35
Fig. 3 Electron Hopping of NTC components 36
Fig. 4 Phase equilibrium diagram of NiO-Mn2O3-O2 37
Fig. 5 (a) Voltage-current Characteristic Chart of NTC 38
Fig. 5 (b) Current-Time Characteristic Chart of NTC 38
Fig. 6 (a) Voltage-current characteristic chart of NTC under different dissipation constant 39
Fig. 6 (b) Voltage-current characteristic chart of NTC under different surrounding temperatures 39
Fig. 7 Example of NTC temperature compensation 40
Fig. 8 Phase variation of different mole%Y2O3 added with ZrO2[21] 41
Fig. 9 Different NTC based mainly on ZrO2 [6] 42
Fig. 10 Experimental Flow Chart of Ni0.66Mn2.34O4 43
Fig. 11 Experimental Flow Chart of Ni0.3Cu0.3Co0.06Mn2.34O4 44
Fig. 12 Experimental Flow Chart of Ni0.3Cu0.3Co0.06Mn2.34O4 added with 8YSZ 45
Fig. 13 Experimental Flow Chart of 8YSZ 46
Fig. 14 X-ray chart of sintered Mn-Ni-O system at different temperatures 47
Fig. 15 X-ray chart of sintered Mn-Ni-O System 48
Fig. 16 X-ray chart of sintered Mn-Ni-Cu-Co-O system at different temperatures 49
Fig. 17 X-ray chart of sintered Mn-Ni-Cu-Co-O system 50
Fig. 18 X-ray chart of sintered Mn-Ni-Cu-Co-O system added with 8YSZ of different amounts 51
Fig. 19 8mol%Y2O3 and 92mol%ZrO2sintered for 10hr 52
Fig. 20 Comparison of peak values of relative percentage intensity of Spinel and content of weight percentage of 8YSZ (ZrO2) 53
Fig. 21 TGA on Mn-Ni-Cu-Co-O System added with powders before calcination 54
Fig. 22 DTA on Mn-Ni-Cu-Co-O System added with powders before calcination 54
Fig. 23 TGA on calcinated substrates of Mn-Ni-Cu-Co-O System 55
Fig. 24 DTA on calcinated substrates of Mn-Ni-Cu-Co-O System 55
Fig. 25 TGA on substrates of Mn-Ni-Cu-Co-O System added with 1%8YSZ 56
Fig. 26 DTA on substrates of Mn-Ni-Cu-Co-O System added with 1%8YSZ 56
Fig. 27 TGA on substrates of Mn-Ni-Cu-Co-O System added with 3%8YSZ 57
Fig. 28 TGA on substrates of Mn-Ni-Cu-Co-O System added with 3%8YSZ 57
Fig. 29 TGA on substrates of Mn-Ni-Cu-Co-O System added with 6%8YSZ 58
Fig. 30 DTA on substrates of Mn-Ni-Cu-Co-O System added with 6%8YSZ 58
Fig. 31 TGA on substrates of Mn-Ni-Cu-Co-O System added with 9%8YSZ 59
Fig. 32 DTA on substrates of Mn-Ni-Cu-Co-O System added with 9%8YSZ 59
Fig. 33 TGA on substrates of Mn-Ni-Cu-Co-O System added with 10%8YSZ 60
Fig. 34 DTA on substrates of Mn-Ni-Cu-Co-O System added with 10%8YSZ 60
Fig. 35-1 lnρ(Ω-㎝) Resistance - Temperature Characteristics Chart of Ni0.66Mn2.34O4 under different calcinations temperatures 61
Fig. 35-2 lnρ(Ω-㎝) Resistance -Temperature Characteristics Chart of Ni0.3Cu0.3Co0.06Mn2.34O4 62
Fig. 35-3 lnρ(Ω-㎝) Resistance -Temperature Characteristics Chart of Ni0.3Cu0.3Co0.06Mn2.34O4 added with YSZ of different amounts 63
Fig. 36 SEM diagram of Ni0.3Cu0.3Co0.06Mn2.34O4 64
Fig. 37 SEM Diagram of Ni0.3Cu0.3Co0.06Mn2.34O4 added with 1% 8YSZ 64
Fig. 38 SEM Diagram of Ni0.3Cu0.3Co0.06Mn2.34O4 added with 3% 8YSZ 65
Fig. 39 SEM Diagram of Ni0.3Cu0.3Co0.06Mn2.34O4 added with 6% 8YSZ 65
Fig. 40 SEM Diagram of Ni0.3Cu0.3Co0.06Mn2.34O4 added with 9% 8YSZ 66
Fig. 41 SEM Diagram of Ni0.3Cu0.3Co0.06Mn2.34O4 added with 10% 8YSZ 66
Fig. 42 500x Metallograph result of Ni0.3Cu0.3Co0.06Mn2.34O4 67
Fig. 43 200x Metallograph result of Ni0.3Cu0.3Co0.06Mn2.34O4 after adding 1% 8YSZ 67
Fig. 44 500X Metallograph result of Ni0.3Cu0.3Co0.06Mn2.34O4 after adding 3% 8YSZ 68
Fig. 45 500X Metallograph result of Ni0.3Cu0.3Co0.06Mn2.34O4 after adding 6% 8YSZ 68
Fig. 46 Ni0.3Cu0.3Co0.06Mn2.34O4 EDS Analysis Result 69
Fig. 47 BEI result after adding 1% 8YSZ 70
Fig. 48 BEI result after adding 3% 8YSZ 71
Fig.49 BEI result after adding 6% 8YSZ 72
Fig. 50 BEI result after adding 9% 8YSZ 73
Fig. 51 BEI result after adding 10% 8YSZ 74
Fig. 52 EDS Analysis Results after addition of 1% 8YSZ (substrate ) 75
Fig. 53 EDS Analysis Results after addition of 1% 8YSZ (crystal boundary) 76
Fig. 54 EDS Analysis Results after addition of 1% 8YSZ (ZrO2) 77
Fig. 55 EDS Analysis Results after addition of 3% 8YSZ (substrate) 78
Fig. 56 EDS Analysis Results after addition of 3% 8YSZ (crystal boundary) 79
Fig. 57 EDS Analysis Results after addition of 3% 8YSZ (ZrO2) 80
Fig. 58 EDS Analysis Results after addition of 6% 8YSZ (substrate) 81
Fig. 59 EDS Analysis Results after addition of 6% 8YSZ (crystal boundary) 82
Fig. 60 EDS Analysis Results after addition of 6% 8YSZ (ZrO2) 83
Fig.61 EDS Analysis Results after addition of 9% 8YSZ (substrate) 84
Fig.62 EDS Analysis Results after addition of 9% 8YSZ (ZrO2) 85
Fig.63 EDS Analysis Results after addition of 10% 8YSZ (substrate) 86
Fig.64 EDS Analysis Results after addition of 10% 8YSZ (ZrO2) 87
1.Brit. Pat, “Improvements in Electric Resistance Bodies of Semi-Conducting Materials”, April 8th (1936) , P.445 P.386.
2.Brit. Pat, “Resistance Materials and Methods of Making the Same”, Oct. 31st (1941) , P.540, P. 844.
3.Brit. Pat, “Resistance Composition and Method of Making It”, June 8th (1942) , P.546, P.697.
4.S.ASIMI, F.GOLESTANT-FARD, T.HASHEMI,“Microstructure of Nickel-Manganese Oxide Thermistors”, High Tech. Ceramics.
5.T.HASHEMI, “Mn-Ni-Cu-O Quaternary NTC Ceramic Thermistor Studied by X-ray Photoelectron Spectroscopy”, Applied Physics Volume 90, (1991) ,No.6.
6.E.D.MACKLEM, “Thermistors”, Bell& Bain LTD., Glasgow, Great Britain (1979).
7.A.NAVROTSKY & O.J.KLEPPY, “The Thermodynamics of Cation Distributions in Simple Spinels”, J.Inorg. Nucl.Chem.
8.E.G.Larson, R.J.Arnott, and D.G.Wickham, “Preparation, Semiconduction and Low-Temperature Magnetization of The SystemNi1-XMn2+XO4”, J.Phys.Solids Vol.23, (1962) ,p.1771-1781.
9.D.G.WICKHAM, “Solid-Phase Equilibria in The System NiO-Mn2O3-O2” J.Inorg. Nucl.Chem., Vol.26, (1957) ,p.1367-1377.
10.J.Jung, J.Therm. Anal. , J.Topter, and A.Feltz, “Thermoanalytic Characterization of NiMn2O4 Formation”, Vol.36(1990) , p.1505-1518.
11.M.Hosseini& B.Yasaei, “Effect of Grain Size and Microstructures on Resistivity of Mn-Co-Ni Thermistor”, Ceramics International , Vol.24 (1998) ,P.543-545.
12.M.Vakiv, O.Shpotyuk, O.Mrooz, I.Hadzaman “Controlled thermistor effect in the system CuxNi1-x-yCo2yMn2-YO4”, J. of the European Ceramic Society, Vol.21 (2001) ,P.1783-1785.
13.高至鈞,“NTC熱敏電阻簡介”,材料與科學,第76期,p.55-61(1993).
14.James S. Reed “Principles of Ceramics Processing”, WILEY-INTERSCIENCE,  (1989) ,p.54-57.
15.Fruhwirth, A.Macher, K.Reichmann, H.G. Schuster, in: P.Duran,J.F. Fernandez, Proceedings of Third Euro-Ceramics Conference,Vol. 2(1993), P.395.
16.A.K. Jean, M.C. Chaturvedi, Phase Transformation in Materials. Prentice Hall, New Jersey, (1992) ,P.276.
17.邱碧秀,“電子陶瓷材料”,徐氏文教基金會出版, (1991) ,P.363-366.
18.M. Hosseini, “The effect of cation composition on the electrical Properties and aging of Mn-Co-Ni thermistors”, Ceramic International ,Vol.26 (2000) , P.245-249.
19.I.R.Gibson, G.P.Dransfield and J.T.S.Irvine, “Influence of Yttria Concentration upon Electrical Properties and Susceptibility to Ageing of Yttria-stabilised Zirconias”, Journal of the European Ceramic Society , Vol.18 (1998) , P. 661-667.
20.Masatoshi Hattori, Yasuo Takeda, Yoshinori Sakaki, Akihiro Nakanishi, Satoshi Ohara, Kazuo Mukai, Jin-HO Lee, Takehisa Fukui, “Effect of aging on conductivity of yttria stabilized zirconia”, Journal of the Power Sources , (2004) ,P.2357,126.
21.Jerome Chevalier, Sylvain Deville, Etienne Munch, Romain Jullian, Frederic Lair, “Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis”, Journal of the Biomaterials,Vol.25 (2004) ,P.5539-5545.
22.F.C. Fonseca, E.N.S. Muccillo, R.Muccillo, “Analysis of the formation of ZrO2:Y2O3 solid solution by the electrochemical impedance spectroscopy technique”, Journal of the Solid State Ionics , Vol.149 (2002) ,P.309-318.
23.I.R.Gibson, G.P.Dransfield and J.T.S.Irvine, “Influence of Yttria Concentration upon Electrical Properties and Susceptibility to Ageing of Yttria-stabilised Zirconias”, Journal of the European Ceramic Society , Vol.18 (1998) ,P.661-667.
24.G.D.C. Csete de Gyorgyfalva, I.M. Reaney, “Decomposition of NiMn2O4 Spinel:an NTC thermistor material”, Journal of the European Ceramic Society, Vol.21 (2001) , P.2145-2148.
25.M. Vakiv, I. Hadzaman, O. Shpotyuk, O. Mrooz, J. Plewa, H. Altenburg, H. Uphoff, O. Bodak, P. Demchenko, “On the role of mass-transfer processes in ageing of manganite electroceramics”, Journal of the European Ceramic Society, Vol.24 (2004) , P.1277-1280.
26.G.D.C. Csete de Gyorgyfalva, A.N. Nolte and I. Reaney, “Correlation between Microstructure and Conductance in NCT Thermistors Produced from Oxide Powders”, Journal of the European Ceramic Society, (1999), P.857-86019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top