跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 05:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉俊興
研究生(外文):Jiun-shing Liu
論文名稱:氧化錳系超電容之研究
論文名稱(外文):Study on The Manganese oxides-band Supercapacitors
指導教授:胡毅胡毅引用關係
指導教授(外文):Yi Hu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
論文頁數:113
中文關鍵詞:超電容 氧化錳 碳
外文關鍵詞:supercapacitor
相關次數:
  • 被引用被引用:15
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:90
  • 收藏至我的研究室書目清單書目收藏:0
實驗一 利用吸附沉積法制備活性碳錳氧化物超電容之研究
實驗一以活性碳的表面吸附過錳酸鉀,再與加入反丁烯二酸反應,使粉體在成核的同時達到催化及分散的效果。以減少氣體的產生率及粉末堆積的問題。所以本實驗乃以水溶解過錳酸鉀的過程中加入不同比例之活性碳,待溶解過後再加反丁烯二酸而得到我們的錳氧化物。再經由DTA-TGA取得所需要熱處理溫度,以FTIR、EPR得知其鍵結的變化,以XRD確定其結構,以TEM觀察其表面形貌,以SEM觀察表面形貌及成分分佈。所得的結果添加活性碳後的電容值先降後升,熱處理完後的結果亦同,但電容值明顯比未熱處理前低。
實驗二 酒精製備氧化錳超電容之研究
由實驗一的實驗數據發現,活性碳確實發揮催化的效果。但其分散的效果卻沒有產生。故實驗二係直接改變反應物的方式改變氧化錳的製程。而本實驗就是以過錳酸鉀加入酒精以代替過去使用的反丁烯二酸並以HCl及NaOH來調控其酸鹼值並比較其反應後的各種性質。其結果顯示於弱酸弱鹼中的確有助於電容值之提升。
Experiment one using the active carbon as an absorbent for Manganese oxides supercapacitors.
Experiment one: using active carbon absorb potassium permanganate. Then acceding the Fumaric acid to make our Manganese oxides. Then using the DTA-TGA to fine the heat treatment temperatures. Then the atomic bonding of the Manganese oxides are estimated by FTIR and EPR. And using the XRD to fine the crystalline structure. using the TEM and SEM to estimate the grain size. The more active carbon the higher capacitive. But only acceding a little active carbon the capacitive will be descend.
Experiment two: using the alcohol to make our Manganese oxides supercapacitor. In this experiment we use the alcohol to replace the Fumaric acid and using the NaOH and HCl to control the pH number. The result if only acceding a little acid or a little alkali will promote the capacitive.
摘要……………………………………………………………………I
Abstract………………………………………………………………II
目錄……………………………………………………………………III
表目錄…………………………………………………………………VI
圖目錄…………………………………………………………………VII
第一章 前言……………………………………………………………1
第二章 實驗原理及文獻回顧…………………………………………4
2-1電容之簡介…………………………………………………………4
2-1-1電容的用途………………………………………………………4
2-1-2傳統電容的種類…………………………………………………6
2-1-3電化學電容………………………………………………………8
2-2超電容之電化學原理………………………………………………11
2-3超電容的種類………………………………………………………15
2-4超電容Cell的組成………………………………………………17
2-5電解質的影響………………………………………………………19
2-6 電化學電容器的電容量測………………………………………21
2-7 粉末形貌對電溶性質的影響……………………………………25
2-7-1、電極活性材料的結晶性………………………………………25
2-7-2、表面型態…………………………………………………26
2-8 金屬氧化物電極………………………………………………28
2-8-1 金屬氧化物電極的製備方法………………………………28
2-8-2 錳系氧化物於超級電容的應用……………………………30
第三章 實驗步驟與方法…………………………………………32
3-1實驗藥品………………………………………………………33
3-2實驗儀器………………………………………………………34
3-2-1 DTA-TGA熱分析……………………………………………34
3-2-2 X-ray繞射光譜儀XRD……………………………………34
3-2-3傅利葉轉換紅外線光譜儀FTIR…………………………34
3-2-4電子自旋共振EPR…補充資料A…………………………35
3-2-5掃描式電子顯微鏡………………………………………36
3-2-6穿透式電子顯微鏡………………………………………36
3-2-7電化學分析儀……………………………………………36
3-3實驗一 利用吸附沉積法製備活性碳錳氧化物超電容之研究…37
3-3-1粉末的製備…………………………………………………37
3-3-2電極之製備…………………………………………………37
3-4 實驗二酒精制備錳氧化物之超電容特性……………………40
3-4-1粉末製備…………………………………………………40
3-4-2電極之製備…………………………………………………40
第四章 結果與討論…………………………………………………42
4-1實驗一 利用吸附沉積法制備活性碳錳氧化物超電容之研究…42
4-2實驗二 酒精制備錳氧化物之超電容特性………………………67
第五章 結論…………………………………………………………105
5-1 實驗一之結論…………………………………………………105
5-2 實驗二之結論…………………………………………………106
第六章 參考資料……………………………………………………108


表目錄
表2-1 綜合比較電化學電容器和電池的基本特性…………………….10
表 2-2 常用金屬氧化物電極材料……………………………………16
表3-1 無電鍍鎳之鍍液成分…………………………………………..38
表4-1 為熱處理前試片的g-factor及△B值………………………54
表4-2 為熱處理後試片的g-factor及△B值………………………57
表4-3 循環伏安所得之比電容值……………………………………64
表4-4 PH變化表……………………………………………………67
表4-5 EPR g-factor dB…………………………………………………77
表4-6 實驗二比電容值………………………………………………103


















圖目錄
圖2-1 超電容示意圖…………………………………………………8
圖2-2 電極-電解液間的電子躍遷圖 (a)還原 (b)氧化……………12
圖2-3 電雙層溶液一側之分布圖……………………………………14
圖2-4 三極電解槽…………………………………………………18
圖2-5 定電位實驗之等效電路……………………………………23
圖2-6 等效電路循環伏安掃描圖(a)E vs t 、(b)i s t 、(c) i) vs E…24
圖3-1 實驗一流程圖…………………………………………………39
圖3-2 實驗二流程圖…………………………………………………41
圖4-1 未添加活性碳之沉澱法 DTA-TGA…………………………43
圖4-2 為添加活性碳後之典型DTA-TGA圖…………………………44
圖4-3 未經熱處理之XRD圖………………………………………45
圖4-4 不同熱處理溫度之XRD圖…………………………………46
圖4-5 未經熱處理不同碳含量之FTIR………………………………47
圖4-6 為300℃熱處理後之FTIR光譜圖……………………………48
圖4-7 不同碳含量之EPR圖譜……………………………………50~52
圖4-8 熱處理後之EPR圖譜………………………………………54~56
圖4-9 為活性碳含量40%之TEM照片…………………………58~59
圖4-10 為活性碳含量6.25%之SEM BEI圖片……………………60
圖4-11 為活性碳含量40%之SEM 圖片…………………….61
圖4-12 不同活性碳含量下的循環伏安圖譜……………………62
圖4-13 300℃熱處理後之循環伏安圖…………………………63
圖4-14 比電容之趨勢圖………………………………………66
圖4-15 實驗二之DTA-TGA……………………………………69~72
圖4-16 改變酸鹼值之XRD圖……………………………………75
圖4-17 熱處理後之XRD…………………………………………76
圖4-18 熱處理前後之EPR光譜圖………………………………78~82
圖4-19 未熱處理之FTIR……………………………………………83
圖4-20 350℃熱處理FTIR…………………………………………84
圖4-21 為熱處理前後之TEM相片………………………………85~90
圖4-22 粉末熱處理前後所製成之電極表面……………………91~95
圖4-23 熱處理前後粉末之SEM表面形貌…………………96~98
圖4-24 粉末未經熱處理之CV圖掃描速率15mV/s,vs SCE………102
圖4-25 粉末熱處理後之CV圖掃描速率15mV/s,vs SCE…………103
圖4-26 實驗二之比電容值…………………………………………104
第六章 參考資料
[1] 維基百科 電容http://en.wikipedia.org/wiki/Capacitor
[2] DIY論壇電容簡介http://www.beareyes.com.cn/2/lib/200408/03/20040803044.htm
[3]Allen J.bard and Larry R.Faulkner Electrochemical methods fundamentals and applications second edition John Wiley & Sons,Inc
[4] C. Arbizzani…etc New trends in electrochemical supercapacitors Journal of Power Sources 100 (2001) 164–170
[5] J.Gamby…etc Studies and characterizations of various activated carbons used for carbon/carbon supercapacitor Journal of Power sources 101 (2001) 109-116
[6] C. Portet…etc Influence of carbon natubes addition carbon-carbon supercapacitor performances in organic electrolye Journal of Power Sources 139 (2005) 371~378
[7] Chan Kim Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors Journal of Power Sources 142 (2005) 382–388
[8] J.P. Zheng, P.J. Cygan, T.R. Jow, “Hydrous Ruthenium oxide as an electrode material for electrochemical capacitors.”, J. Electrochem. Soc., vol.142, p.2699, 1995.
[9] M. Carlen and R. Kotz,“Principles and applications of electrochemical capacitors”, Electrochimica Acta, vol.45, p.2483,2000.
[10] J.P. Zheng and T.R. Jow, “Effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors”, J. Electrochem. Soc., vol.144, p2417, 1997.
[11] M. Ue, K. Ida, and S. Mori, “Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors”, J. Electrochem. Soc., vol.141, p.2989, 1994.
[12] J.P. Zheng, T.R. Jow, “A new charge storage mechanism for electrochemical capacitors”, J. Electrochem. Soc., vol.142, p. L6,1995.
[13] Chuan Lin, James A. Ritter, and Branko N. Popov, “Development of Carbon- Metal Oxide Supercapacitors from Sol-Gel Derived Carbon-Ruthenium Xerogels”, Journal of The Electrochimical Society, 146(9), 3155-3160(1999)
[14] J. C. F. Boodts, S. Trasatti, “Hydrogen evolution on iridium oxide cathodes”, J. Applied Electrochem., 19, 255-262 (1989)
[15]R.P. Simpraga and B. E. Conway, “The real-are scaling factor in electrocatalysis and in charge storage by supercapacitors”,Electrochim.Acta,43,3045-3058(1998).
[16]R,Otogawa, M. Morimitsu, and M. Matsunaga, “Effect of microstructure of IrO2-based anodes on electrocatalytic properties”, Electrochimica Acta, 44,1509-1513(1998).
[17] J. M. Marracino, F. Coeuret and S. Langlois, “A first Investigation of Flow-Through Porous Electrodes Made of Metallic Felts or Foams”, Electrochim. Acta, 32, 1303-1309(1987)
[18] H.Y. Lee, J.B. Goodenough, V.Manivannan, “Electrochemical capacitors with KCl electrolyte”, Comptes Rendus Chimie, vol.2, p.565, 1999.
[19] Ravinder N. Reddy,Ramana G.Reddy,Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material Journal of Power Source Volume: 132, Issue: 1-2, May 20, 2004, pp. 315-320 (2004)
[20]Chi-Chang Hu, Yao-Huang Huang, “Cyclic voltammetric deposition of hydrous Ruthenium oxide for electrochemical capacitors”, J. Electrochem. Soc., vol.146, n7, p2465, 1999.
[21]Chi-Chang Hu, Ta-Wang Tsou, “The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitor using experimental strategies”, J. Power Sources, vol.115, p.179, 2003.
[22]H.Y. Lee, S.W. Kim, “Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode”, Electrochem. Solid-State Lett., vol.4, n3, p.A19, 2001.
[23J. Mozota and B. E. Conway, “Surface and Bulk Processes at Oxidized Iridium ElectrodesI. Monolayer Stage and Transition to Reversible Multilayer Oxide Film Behavior” Electrochim. Acta, 28, 1 (1983).
[24]M. Ito, Y. Murakami, H. Kaji, K. Yahikozawal, and Y. Takasu, “SurfaceCharacterization of RuO2-SnO2 Coated Titanium Electrodes” J. Electrochem. Soc.,143, 32-36(1996).
[25]Moggi Pietro, Predieri Giovanni, Di Silvestri Fabio, Ferretti Andrea,“Ru/SiO2 catalysts prepared by the sol–gel method from Ru3(CO)12”, Applied Catalysis A: General, 182, Issue: 2, June 21, 1999, 257-265
[26]T.-C. Wen and C.-C. Hu.,”Hydrogen and Oxygen Evolutions on Ru-Ir BinaryOxides” ,J Electrochem. Soc., 139, 2158 (1992)
[27]Y.C. Zhang, H. Wang, B. Wang, H. Yan, A. Ahniyaz, and M. Yoshimura, “Low temperature synthesis of nanocrystalline Li4Mn5O12 by a hydrothermal method”, Mater. Res. Bull., vol.37, p.1411, 2002
[28]J. Mozota and B. E. Conway, “Surface and Bulk Processes at Oxidized Iridium ElectrodesI. Monolayer Stage and Transition to Reversible Multilayer Oxide Film Behavior” Electrochim. Acta, 28, 1 (1983).
[29]J. Mozota and B. E. Conway, “Surface and Bulk Processes at Oxidized Iridium Electrodes II. Monolayer Stage and Transition to Reversible Multilayer Oxide Film Behavior” Electrochim. Acta, 28, 9 (1983)
[30]H. Y. Lee and J. B. Goodenough, “Supercapacitor Behavior with KCl Electrolyte”,J. Solid State Chem., 144, 220 (1999)
[31]S.-C. Pang, M. A. Anderson, and T. W. Chapman, “Novel Electrode Materials for Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide”, J. Electrochem. Soc., 147, 444 (2000).
[32]Rajendra Prasad, Kalakodimi; Miura, Norio”Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors” Electrochemistry Communications Volume: 6, Issue: 10, October, 2004, pp. 1004-1008
[33]Study on MnO2 Nanoparticles/Carbon Black for Supercapacitor Electrodes by Shr-Jiun Ju Thesis for Master of Science Department of Materials Engineering Tatung University June 2005
[34]Sol–gel MnO2 as an electrode material for electrochemical capacitors by Reddy, Ravinder N…etc Journal of Power Sources Volume: 124, Issue: 1, October 1, 2003, pp. 330-337
[35] Thomas Kohler…etc Hydorgen Bonding and Jahn-Teller Distortion in Groutite, α-MnOOH, and Manganite, γ-MnOOH, and Their Relations to the Manganese Dioxide Ramsdellite and Pyrolusite Journal of solid state chemistry 133,486~500 (1997)
[36] M.Kakazey…etc Electron paramagnetic resonance in MnO2 powders and comparative estimation of electric characteristics of power surces based on them in the MnO2-Zn system Journal of Power Sources 114 (2003) 170~175
[37] Krishna, R.M…etc. Structural investigations of Mn2+ ions in alkali barium borophosphate glasses by EPR and optical absorption techniques Materials Research Bulletin Volume: 34, Issue: 10-11, July - August, 1999, pp. 1521-1525
[38]http://memo.cgu.edu.tw/jeng-s/free/fr-ESR.ppt
[39] http://www.man.lodz.pl/LISTY/CHEMFAN/2003/03/5078.html
[40] A. Szorcsik…etc Preparation and structural studies of organotin(IV) complexesformed with organic carboxylic acids Journal of Radioanalytical and Nuclear Chemistry, Vol. 256, No. 1 (2003) 3–10
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top