跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 18:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明旭
研究生(外文):Ming-Shu Li
論文名稱:電漿CVD法沉積半導性薄膜及其在化學感測器應用
論文名稱(外文):Plasma CVD-deposited Semiconductive Thin Films and Their Application of Chemical Sensors
指導教授:陳克紹陳克紹引用關係
指導教授(外文):Ko-Shao Chen
學位類別:博士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:162
中文關鍵詞:微電子感測元件電極圖形設計氧化錫(SnOx)有機薄膜UV光接枝聚合乙炔及含氮混合物
外文關鍵詞:Microelectronic sensitive deviceElectrode pattern designSnOx organic-like filmsUV-induced grafting polymerizationAcetylene and nitrogen-containing mixtures
相關次數:
  • 被引用被引用:1
  • 點閱點閱:433
  • 評分評分:
  • 下載下載:85
  • 收藏至我的研究室書目清單書目收藏:1
本研究藉由感測元件的設計,改變元件的電極結構、幾何圖形(pattern)、尺寸(size)、寬度(width)與間距(inter-distance)等,用以增進其有效電極幅(W)及縮小電極間距(I),以提升感測的效果。以濕度感測層的製作為例,將配製好之有機電解質NaSS (sodium styrenesulfonate)單體溶液,利用spin coating塗佈於所設計的電極上,再以UV光照射接枝聚合。由結果可知,在相對濕度RH 40~90%變化下,以具較大W/I值之圓形感測電極具有較低且呈現約3 orders的感濕阻抗變化。本研究也以電漿沉積及表面接枝聚合來改質無機基材的表面結構與特性,如有機性質、結構組成、親疏水性、官能基特性、及導電性等。以四甲基錫(tetramethyltin, TMT, Sn(CH3)4)和氧氣(O2 gas)混合為反應單體,利用低溫電漿化學氣相沉積PECVD(plasma enhanced chemical vapor deposition)法沉積氧化錫(SnOx)有機薄膜,此有機膜含有過氧化物或自由基,可再後續藉由UV光接枝功能性高分子,藉以改變基材表面的特性。有機共軛半導性高分子近年來有愈來愈多的需求被應用於電子、光學、顯示元件及感測器方面。利用PECVD法,分別以乙炔(C2H2)、乙炔/氮氣(C2H2/N2)及乙炔/氨氣(C2H2/NH3)之含氮混合物(nitrogen-containing mixtures)沉積薄膜。當氮氣或氨氣與乙炔混合通入反應腔體,電漿沉積膜包含所有混合單體的元素,其不但呈現出C–H鍵結,同時也顯現出含氮官能基(nitrogen functionalities)的特性。[N]/[C]原子比例因通入單體組成不同而改變,以氨氣混合乙炔達最大值0.12。膜之阻抗在室溫及大氣環境下量測是接近於絕緣體(over 108 Ω)範圍,而其也不具有濕度感應性。在膜吸附酒精氣體(vapor)之後,不論沉積所用混合單體的組成,膜之阻抗下降至約106 Ω,有3 order阻抗之變化,並在20秒內達到穩定值。
In this study, the design of the sensitive device is employed to improve the sensitive effects by varying the construction, pattern, size, width, and inter-distance of the electrode. The purpose is to increase the effective width and reduce the inter-distance of the electrodes. For fabricating the humidity sensitive layer, the monomeric solution of organic electrolyte NaSS was spin-coated on the designed electrodes with different patterns and then exposed to UV-light to induce grafting polymerization. From the results, the circular sensitive electrode with higher W/I value has the lower impedance and shows about 3 orders of change in the impedance for the variation of relative humidity from 40 to 90%. The plasma deposition and surface grafting polymerization have been used to modify the surface structure and properties of inorganic substrates such as organic nature, structural constitution, hydrophilicity, functional groups, and conductivity. In this study, tin oxide (SnOx) organic-like thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) of tetramethyltin (TMT) and O2 gas mixtures at low temperature. The organic-like thin films containing peroxides or free radicals can be subsequently grafted hydrophilic polymer acrylamide (AAm) by UV-induced grafting polymerization. Plasma-deposited thin films were prepared from PECVD of acetylene (C2H2), acetylene/nitrogen (C2H2/N2), or acetylene/ammonia (C2H2/NH3). When N2 or NH3 was mixed with C2H2 in the feed, the films were identified to contain all elements of the mixture and the properties of the films were implied by the C–H bonds and nitrogen functionalities. The resistance of the thin films measured at ambient environment is over 108 Ω near electric insulator and independent of humidity. It is found that the resistance of the thin film sensors prepared from C2H2, C2H2/N2, and C2H2/NH3 is distinctly decreased by over 2 orders of magnitude by the adsorption of ethanol vapor.
TABLES OF CONTENTS

CHINESE ABSTRACT i
ENGLISH ABSTRACT iii
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xvii
CHAPTER
I Literature Review 1
1.1 Plasma 2
1.2 Plasma depositions 3
1.3 Photo-induced grafting polymerization 5
1.4 Sensitive properties of tin oxide films 7
1.5 Organic semiconductor films 9
1.5.1 Chemical syntheses 9
1.5.2 Plasma depositions 11
1.6 Sensor application of polymers 14
References 16
II Design and fabrication of multi-function and
miniaturizing impedance-type sensitive devices 23
2.1 Introduction 24
2.2 Experimental details 26
2.2.1 Design of the sensitive devices 26
2.2.1.1 Preparation of the screen 27
2.2.1.2 Preparation of the mask 27
2.2.2 Fabrication of the sensitive devices 28
2.2.2.1 Thick film techniques 28
2.2.2.2 Thin film techniques 29
2.2.3 Preparation of humidity sensitive layer 29
2.2.4 Impedance variations with humidity 30
2.3 Results and discussion 31
2.3.1 Design of the sensitive electrodes 31
2.3.2 Impedance variations with humidity 33
2.3.3 Device morphology 35
2.4 Conclusions 37
References 38
III Surface organic modification of inorganic substrates by
plasma deposition of tin oxide organic-like thin films and
grafting polymerization 53
3.1 Introduction 54
3.2 Experimental details 56
3.2.1 Substrate preparation 56
3.2.2 Film deposition 57
3.2.3 Photo (UV)-induced grafting polymerization 57
3.2.4 Measurement and analysis 58
3.3 Results and discussion 59
3.3.1 Morphology 59
3.3.2 Wettability 60
3.3.3 Chemical analysis 61
3.3.3.1 Micro FTIR 61
3.3.3.2 X-ray photoelectron spectroscopy 62
3.3.4 Electric properties 63
3.3.4.1 Impedance variations with temperature 63
3.3.4.2 Impedance variations with humidity 64
3.4 Conclusions 67
References 68
IV Chemical characterization of plasma-deposited films
from acetylene and nitrogen-containing mixtures and their
ethanol vapor sensitivity 84
4.1 Introduction 85
4.2 Experimental details 87
4.2.1 Film deposition 87
4.2.2 Sensor fabrication 88
4.2.3 Measurement and analysis 88
4.3 Results and discussion 90
4.3.1 Growth rate 90
4.3.2 Film morphology 91
4.3.2.1 Observation by SEM 91
4.3.2.2 Observation by AFM 92
4.3.3 Chemical analysis 93
4.3.3.1 Micro FTIR 93
4.3.3.2 X-ray photoelectron spectroscopy 95
4.3.3.3 Raman spectroscopy 97
4.3.4 Optical properties 98
4.3.4.1 UV–vis absorption spectroscopy 98
4.3.4.2 Optical band gap and Urbach tail width 99
4.3.4.3 Bonding structure and photoluminescence 101
4.3.5 Wettability 102
4.3.6 Resistance variations with humidity 103
4.3.7 Response to ethanol 104
4.4 Conclusions 106
References 107
LIST OF PUBLICATIONS 138
RESUME 140



LIST OF FIGURES
Fig. 1-1 Scheme of all-trans (1) and all-cis (2) polyacetylene 21
Fig. 1-2 The conductivity of conjugated semiconductor polyacetylene
films varied by doping 22
Fig. 2-1 Sensitive devices fabricated by the conventional
semiconductor processes on Si-wafer 42
Fig. 2-2 The design of the interdigital electrodes with (a) short and
(b) long gap for screen-printing 43
Fig. 2-3 The design of the circular sensitive electrode for screen-printing 44
Fig. 2-4 The four-function electrodes integrated sensor device of
(a) original and (b) new design for screen-printing 45
Fig. 2-5 The design of four-function electrodes integrated sensor device
for photolithography 46
Fig. 2-6 The design of the circular sensitive electrode for
photolithography 47
Fig. 2-7 The photographs of the screen-printing (a) circular
electrode, (b)interdigital electrode with short and (c) long gap 48
Fig. 2-8 Impedance dependence on the relative humidity for a sensor
based on NaPSS mixing with 1% phenol-formaldehyde resin 49
Fig. 2-9 Impedance dependence on the relative humidity for a sensor
based on NaPSS mixing with 15% phenol-formaldehyde resin 50
Fig. 2-10 SEM micrographs of the sensitive device: (a) Al2O3 substrate
(×5 K), (b) Ag electrode (×5 K), and (c) boundary
of substrate/electrode (×1.2 K) 51
Fig. 2-11 AFM images of the sensitive device: (a) Al2O3 substrate and
(b) Ag electrode 52
Fig. 3-1 Different structures and properties between inorganic and
organic materials or substrates 72
Fig. 3-2 The principle of tin oxide organic-like thin films
containing peroxides or free radicals for subsequent
photo-induced grafting polymerization of AAm 73
Fig. 3-3 The size of the integrated multifunctional device on Si-wafer is
4500×6500 μm2. Two-unit compositive sensors 74
Fig. 3-4 The experimental set-up for plasma reaction system 75
Fig. 3-5 The equipment for Photo-induced (UV-light) surface
grafted copolymerization 76
Fig. 3-6 SEM micrographs of PECVD SnOx organic-like thin films.
Plasma conditions: power 50 W, TMT:O2=40:80 mtorr,
deposition time: (a)30 sec, (b)60 sec, (c)120 sec, (d)180 sec,
(e)300 sec, ×30 K, Si-wafer substrate 77
Fig. 3-7 Micro FT/IR spectra of PECVD tin-oxide (SnOx) organic-like
thin films. Plasma conditions: (TMT/O2=40:80 mtorr, power:
50 W, time: (a) 30 sec, (b) 60 sec, (c) 120 sec, (d) 180 sec,
(e) 300 sec) 78
Fig. 3-8 Micro FT/IR spectra of PECVD tin-oxide (SnOx) organic-like
thin films. Plasma conditions: (TMT/O2=40:80 mtorr, power:
50 W, time: (a) 30 sec, (b) 60 sec, (c) 120 sec, (d) 180 sec,
(e) 300 sec and post treatment of O2-plasma at 200 mtorr,
600 sec, 50 W) 79
Fig. 3-9 The impedance measurement of SnOx organic-like films was
varied with temperature. Plasma conditions: (TMT:O2=40:80
mtorr, time=30/60/120/180/300 s, 50 W). Test at R.H.=55% 80
Fig. 3-10 Evolution of impedance of PECVD SnOx organic-like thin
films as a function of temperature. Plasma
conditions: (TMT:O2=40:80 mtorr, time=30/60/120/180/300
s, 50 W, O2-plasma 200 mtorr, 600 sec, 50 W). Test at
R.H.=55% 81
Fig. 3-11 The relationship was between the related humidity and
the impedance of PECVD SnOx organic-like films.
Plasma conditions:(TMT:O2=40:80 mtorr, time=20/30/60/120/
180 s, 50 W). Test at temp. 25 ℃ 82
Fig. 3-12 The relationship between the related humidity and the
impedance of PECVD SnOx organic-like films.
Plasma conditions:(TMT:O2=40:80 mtorr, time=20/30/60/120/
180 s, 50 W), grafting AAm, 10 wt%, 15min, 1000 W).
Test at temp. 25℃ 83
Fig. 4-1 The plasma reaction system 114
Fig. 4-2 Scheme of alcohol sensitive device 115
Fig. 4-3 SEM micrographs of the thin films deposited from (a) C2H2,
(b) C2H2/N2, and (c) C2H2/NH3 mixtures, ×30 K, on
Si-wafer substrate 116
Fig. 4-4 AFM 3D images of the thin films deposited from (a) C2H2,
(b) C2H2/N2, and (c) C2H2/NH3 mixtures on Si-wafer substrate 117
Fig. 4-5 AFM 2D image of the Si-wafer substrate cut from n-type
(110) plane for roughness analysis, Ra: average or
mean roughness 118
Fig. 4-6 AFM 2D image of the plasma-deposited film from C2H2
(a) roughness analysis and (b) section analysis for particle
size distribution 119
Fig. 4-7 AFM 2D image of the plasma-deposited film from C2H2/N2
(a) roughness analysis and (b) section analysis for particle
size distribution 120
Fig. 4-8 AFM 2D image of the plasma-deposited film from C2H2/NH3
(a) roughness analysis and (b) section analysis for particle
size distribution 121
Fig. 4-9 Micro FTIR spectra of the thin films deposited from
(a) C2H2, (b) C2H2/N2, and (c) C2H2/NH3 mixtures, on
Si-wafer substrate 122
Fig. 4-10 The XPS survey spectra of the thin films deposited from
(a) C2H2, (b) C2H2/N2, and (c) C2H2/NH3 mixtures 123
Fig. 4-11 C1s and N1s XPS spectra of the thin films deposited from
(a) C2H2, (b) C2H2/N2, and (c) C2H2/NH3 mixtures 124
Fig. 4-12 Raman spectrum of the thin films deposited from (a) C2H2,
(b) C2H2/N2, and (c) C2H2/NH3 mixtures 125
Fig. 4-13 UV-vis absorption spectra of the thin films deposited from
(a) C2H2, (b) C2H2/N2, and (c) C2H2/NH3 mixtures 126
Fig. 4-14 The variation in the absorption coefficient (α) with photon
energy (hν) was obtained from the absorbance–wavelength
plot 127
Fig. 4-15 The Eg of the films were obtained by the extrapolation of
linear region of the (αhν)1/2 against photon energy (hν) plots 128
Fig. 4-16 XPS spectra of N1s peak from (a) C2H2/N2 and
(b) C2H2/NH3 mixtures 129
Fig. 4-17 Light-excited spectra of the thin films deposited from (a) C2H2,
(b) C2H2/N2, and (c) C2H2/NH3 mixtures 130
Fig. 4-18 PL spectra of the thin films deposited from (a) C2H2,
(b) C2H2/N2, and (c) C2H2/NH3 mixtures. Exciting is by 325
nm UV-laser 131
Fig. 4-19 Scheme of the measurement of alcohol vapor response
and recovery of the thin film sensors 132
Fig. 4-20 Resistance dependence on the ethanol concentration for the
thin film sensors prepared from (a) C2H2, (b) C2H2/N2, and
(c) C2H2/NH3 mixtures. The resistance is over the instrument
limit of 108 W measured at 0% ethanol 133
Fig. 4-21 The thin film sensor deposited from the C2H2. Ethanol
sensing properties: (a) response and (b) response-recovery
time. Test at 95% ethanol concentration 134
Fig. 4-22 The thin film sensor deposited from the C2H2/N2 mixture.
Ethanol sensing properties: (a) response and (b)
response-recovery time. Test at 95% ethanol concentration 135
Fig. 4-23 The thin film sensor deposited from the C2H2/NH3
mixture. Ethanol sensing properties: (a) response and
(b) response-recovery time. Test at 95% ethanol
concentration 136
Fig. 4-24 Reproducibility test of ethanol sensing of the thin film
sensors prepared from (a) C2H2, (b) C2H2/N2, and (c)
C2H2/NH3 mixtures. Test at 95% ethanol concentration 137


LIST OF TABLES
Table 2-1 Design parameters of the impedance-type sensitive devices 39
Table 2-2 Impedance variations with humidity by using different
sensitive electrodes 40
Table 2-3 Modified impedances excluded the factors of electrode
dimension and film thickness 41
Table 3-1 Wettability of surface modified substrates 71
Table 4-1 Characteristics of the thin films deposited from various
gaseous mixtures 110
Table 4-2 Surface chemical composition of the plasma-deposited films 111
Table 4-3 The variation of the Raman D- and G-lines as a function of
the mixture composition 112
Table 4-4 Resistance variations with relative humidity for the
films deposited from various mixtures 113
Chapter I

[1] Herman V. Boening, “Fundamentals of Plasma Chemistry and Technology”, Technomic Publication.
[2] J. D. Cobine, edited “Gaseous Conductors” Dover, New York.
[3] M. Ohring, “Chemical Vapor Deposition”, ACADEMIC PRESS, INC., Harcourt Brace Jovanovich, Publishers.
[4] You-Lo Hsieh and Meiping Wu, J.Appl. Polym. Sci. Vol 43, pp 2067-2082 (1991).
[5] You-Lo Hsieh, Derbra A. Timm and Meiping Wu, J.Appl. Polym. Sci.,Vol pp 1736-1737 (1988).
[6] S.V. Manorama, C.V. Gopal Reddy, V.J. Rao, Nanostruct. Mater. 11 (5) (1999) 643-649.
[7] V.Casey , M.I.Stephenson, J.Phys.D: Appl. Phys. 23 (1990) 1212.
[8] L. Bruno, C. Pijolat, R. Lalauze, Sens. Actuators B 18-19 (1994) 195-199.
[9] K. Steiner, G. Sulz, E. Neske, E. Wagner, Sens. Actuators B 26/27 (1995) 64.
[10] S.H. Park, Y.C. Son, W.S. Willis, S.L. Suib, K.E. Creasy, Chem. Mater. 10 (1998) 2389-2398.
[11] N. Inagaki, Y. Hashimoto, J. Polym. Sci.: Polym. Lett. 24 (1986) 447.
[12] H. Yasuda ed., Plasma Polymerization, Academic Press, Inc., Orando, 1985.
[13] N. Inagaki ed., Plasma Surface Modification and Plasma Polymerization, Technomic Publishing Company, Inc., Lancaster Basel (1996).
[14] M. Millard, in J. R. Hollahan and A. T. Bell (ed.), Techniques and Applications of Plasma Chemistry. Wiley, New York, (1974), Chapter 5.
[15] Schultz, Terold, “ Polymer Material Science “ Prenticle-Hall Publication (1974), New Jersey.
[16] Toshihiro Hirotso and Shigeru Nakajima, J. Appl Polym. Sci., Vol. 36, pp. 177-189 (1988).
[17] 林和子, 福村裕史, 山本襄, 山下岩男, 高分子論文集Vol.44, NO 6, pp. 429-436 (1987).
[18] 陳克紹, O. Tsuji, 筏義人, 中華民國第十五屆高分子研討會論文專集, P 945, 1992, Taiwan.
[19] J. Watson, The tin oxide gas sensor and its applications. Sens. Actuators 5 (1984) 29-42.
[20] K. Takahata, Tin dioxide sensors—development and applications, in: T. Seiyama (Ed.), Chemical Sensors Technology vol. 1 Elsevier, Amsterdam, 1988, pp. 39-45.
[21] K. Ihokura, J. Watson, The Stannic Oxide Gas Sensor: Principles and Applications, CRC Press. Boca Raton, FL, 1994.
[22] W. Göpel, K.-D. Schierbaum, SnO2 gas sensors: current status and future prospects, Sens. Actuators, B 26-27 (1995) 1-12.
[23] Roopali Srivastava, R. Dwivedi, S.K. Srivastava, Effect of oxygen and hydrogen plasma treatment on the room temperature sensitivity of SnO2 gas sensors, Microelectronics Journal 29 (1998) 833-838.
[24] S.A. Krutovertsev, A.E. Tarasova, L.S. Krutovertseva, A.V. Zorin, Integrated multifunctional humidity sensor, Sensors and Actuators A 62 (1997) 582-585.
[25] G. Sberveglieri, R. Murri and N. Pinto, Characterization of porous Al2O3/SiO2-Si sensor for low and medium humidity ranges, Sensors and Actuators B, 23 (1995) 177-180.
[26] T. Kuroiwa, T. Miyagishi, A. Ito, M. Matsuguchi, Y. Sadaoka and Y. Sakai, A thin-film polysulfone-based capacitive-type relative-humidity sensor, Sensors and Actuators B, 25 (1995) 692-695.
[27] K. Stephenson, Application of a surface conductivity moisture sensor in integrated circuit packaging, Solid Stale Technol., (June) (1980) 34-38.
[28] H. Biederman, Vacuum 37 (1987) 367.
[29] D.D. Gebler, Y.Z. Wang, J.W. Blatchford, J. Appl. Phys. 78 (1995) 4264.
[30] Y. Li, M.J. Yang, Sens. Actuators B 87 (2002) 184–189.
[31] H. Shirakawa, S. Ikeda, Polym. J. 2 (1971) 231.
[32] S.A. Chen, H.J. Shy, J. Polym. Sci.: Polym. Chem. Ed. 23 (1981) 2441.
[33] H. Shirakawa, Curr. Appl. Phys. 1 (2001) 281-286.
[34] Y. Şahin, K. Pekmez, A. Yıldız, Synth. Met. 129 (2002) 117–121.
[35] Y. Li, M. Yang, Synth. Met. 129 (2002) 285–290.
[36] N. Inagaki, T. Yagi and K. Katsuura, Eur. Polym. J., 18 (1982) 621.
[37] H. Yasuda and T. Hirotsu, J. Polym. Sci., Polym. Chem. Ed., 15 (1977) 2749.
[38] A. Morinaka and Y. Asano, J. Appl. Polym. Sci., 27 (1982) 2139.
[39] A.Y. Liu, M.L. Cohen, Science 245 (1989) 841.
[40] A. Crunteanu, M. Charbonnier, M. Romand, R. Alexandrescu, Appl. Surf. Sci. 154-155 (2000) 393-398.
[41] A. Bearzotti, I. Fratoddi, L. Palummo, S. Petrocco, A. Furlani, C.L. Sterzo, M.V. Russo, Sens. Actuators B 76 (2001) 316.
[42] W. Jacob, Thin Solid Films, 326 (1998) 1-42.
[43] S. F. Durrant, N. Marçal, S. G. Castro, R. C. G. Vinhas, M. A. B. de Moraes, J. H. Nicola, Thin Solid Films 259 (1995) 139-145.
[44] R. d’Agostino, F. Cramarossa, V. Caloprico and R. d’Ettole, J. Appl. Phys., 54 (1983) 1284.
[45] J. Pola, Z. Bastl, A. Ouchi, Surf. Coat. Tech. 157 (2002) 55-58.
[46] N. Inagaki ed., Plasma Surface Modification and Plasma Polymerization, Technomic Publishing Company, Inc., Lancaster Basel (1996).
[47] S. Bhattacharyya, C. Cardinaud, G. Turban, J. Appl. Phys. 83 (1998) 4491.
[48] I. Kieser and M. Neusch, Thin Solid Films, 118 (1984) 203.
[49] H. Yasuda, M. O. Bumgarner, H. C. Marsh and N. Morosoff, J. Polym. Sci., Polym. Chem. Ed., 14 (1976) 195.
[50] I. Retzko, J.F. Friedrich, A. Lippitz, W.E.S. Unger, J. Electron Spectrosc. Relat. Phenom. 121 (2001) 111-129.
[51] K. Baba, R. Hatada, Surf. Coat. Tech. 136 (2001) 192-196.
[52] I. Fratoddi, P. Altamura, A. Bearzotti, A. Furlani, M.V. Russo, Thin Solid Films, 458 (2004) 292-298.
[53] S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, B. Rafferty, L. M. Brown, J. Schwan, D. F. Franceschini, and G. M. Mariotto, J. Appl. Phys. 81, (1997) 2626.


Chapter II

[1] R. M. White and F. W. Voltmer, Appl. Phys. Lett., 1965, 7, 314.
[2] M. R. Haskard, Thick-Film Hybrids Manufacture and Design, Prentice Hall, 1988.
[3] 宇佐美晶、三浦敬男、風見明、小池保夫、內田勝利、守下實,厚膜IC應用,東京電力一社, 1989.
[4] 李耀霖, 厚膜電子元件, 華南理工大學出版社, 1991.
[5] 莊達人, VLSI製造技術, 高立圖書, 1995.
[6] W. S. Ruska, Microelectronic Processing, McGraw-Hill Book Company, 1988.
[7] S.M. Sze, VLSI Technology, McGraw-Hill Book Company, 1983.
[8] N. Yamazoe, Sens. Actuators B 108 (2005) 2-14.
[9] J. Engel, J. Chen, Z. Fan, C. Liu, Sens. Actuators A 117 (2005) 50-61.
[10] Y. Li, M.J. Yang, Sens. Actuators B 87 (2002) 184-189.
[11] Y. Li, M. Yang, Synth. Met. 129 (2002) 285-290.
[12] Y. Li, M.J. Yang, Y. She, Talanta 62 (2004) 707-712.
[13] Y. Ide and N. Kojima, Kobunshi Ronbunshu, Vol. 44, No. 11 (1987) 811-816.

Chapter III

[1] E. Kny, L. L. Levenson, W. J. James and R. A. Auerbach, Thin Solid Films, 85 (1) (1981) 23.
[2] N. Inagaki, T. Yagi and K. Katsuura, Eur. Polym. J., 18 (7) (1982) 621.
[3] E. Kny, L. L. Levenson, W. J. James and R. A. Auerbach, Thin Solid Films, 64 (3) (1979) 395.
[4] TDK Corporation, Jpn. Kokai Tokkyo Koho JP 58, 222, 115, 1983.
[5] N. Inagaki and M. Mitsuuchi, J. Polym. Sci., Polym. Lett. Edn., 22 (6) (1984) 301.
[6] M. Yamada, J. Tamano, K. Yoneda, S. Morita and S. Hattori, Jpn. J. Appl. Phys. Part 1, 21 (5) (1982) 768.
[7] J. Watson, The tin oxide gas sensor and its applications. Sens. Actuators 5 (1984) 29-42.
[8] K. Takahata, Tin dioxide sensors—development and applications, in: T. Seiyama (Ed.), Chemical Sensors Technology vol. 1 Elsevier, Amsterdam, 1988, pp. 39-45.
[9] L. Sangaletti, L.E. Depero, A. Dieguez, G. Marca, J.R. Morante, A.R. Rodriguez, G. Sberveglieri, Sens. Actuators B 44 (1997) 268-274.
[10] R.K. Sharma, P.C.H. Chan, Z. Tang, G. Yan, I.M. Hsing, J.K.O. Sin, Sens. Actuators B 72 (2001) 160-166.
[11] K. Ihokura, J. Watson, The Stannic Oxide Gas Sensor: Principles and Applications, CRC Press. Boca Raton, FL, 1994.
[12] V. Brinzari, G. Korotcenkov, V. Golovanov, Thin Solid Films 391 (2001) 167-175.
[13] S.H. Park, Y.C. Son, W.S. Willis, S.L. Suib, K.E. Creasy, Chem. Mater. 10 (1998) 2389-2398.
[14] M. Mwamburi, E. Wäckelgård, A. Roosb, Thin Solid Films 374 (2000) 1.
[15] S.V. Manorama, C.V. Gopal Reddy, V.J. Rao, Nanostruct. Mater. 11 (5) (1999) 643-649.
[16] V.Casey , M.I.Stephenson, J.Phys.D: Appl. Phys. 23 (1990) 1212.
[17] L. Bruno, C. Pijolat, R. Lalauze, Sens. Actuators B 18-19 (1994) 195-199.
[18] K. Steiner, G. Sulz, E. Neske, E. Wagner, Sens. Actuators B 26/27 (1995) 64.
[19] S.H. Park, Y.C. Son, W.S. Willis, S.L. Suib, K.E. Creasy, Chem. Mater. 10 (1998) 2389-2398.
[20] N. Inagaki, Y. Hashimoto, J. Polym. Sci.: Polym. Lett. 24 (1986) 447.
[21] H. Yasuda ed., Plasma Polymerization, Academic Press, Inc., Orando, 1985.
[22] N. Inagaki ed., Plasma Surface Modification and Plasma Polymerization, Technomic Publishing Company, Inc., Lancaster Basel (1996).
[23] M. Millard, in J. R. Hollahan and A. T. Bell (ed.), Techniques and Applications of Plasma Chemistry. Wiley, New York, 1974, Chapter 5.
[24] E. Kny, L.L. Levenson, W.J. James and R.A. Auerbach, Thin Solid Films, 85 (1) (1981) 23.
[25] N. Inagaki, T. Yagi, and K. Katsuura, Eur. Polym. J. Vol. 18, pp. 621-626, 1982.
[26] Roopali Srivastava, R. Dwivedi, S.K. Srivastava, Microelectronics Journal 29 (1998) 833-838.
[27] S. O. Kasap, Principles of Electrical Engineering Materials and Devices, Revised Edition, Chapter 5, pp. 330-340.


Chapter IV

[1] H. Biederman, Vacuum 37 (1987) 367.
[2] D.D. Gebler, Y.Z. Wang, J.W. Blatchford, J. Appl. Phys. 78 (1995) 4264.
[3] Y. Li, M.J. Yang, Sens. Actuators B 87 (2002) 184–189.
[4] H. Shirakawa, S. Ikeda, Polym. J. 2 (1971) 231.
[5] S.A. Chen, H.J. Shy, J. Polym. Sci.: Polym. Chem. Ed. 23 (1981) 2441.
[6] H. Shirakawa, Curr. Appl. Phys. 1 (2001) 281-286.
[7] Y. Şahin, K. Pekmez, A. Yıldız, Synth. Met. 129 (2002) 117–121.
[8] Y. Li, M. Yang, Synth. Met. 129 (2002) 285–290.
[9] N. Inagaki, T. Yagi and K. Katsuura, Eur. Polym. J., 18 (1982) 621.
[10] H. Yasuda and T. Hirotsu, J. Polym. Sci., Polym. Chem. Ed., 15 (1977) 2749.
[11] A. Morinaka and Y. Asano, J. Appl. Polym. Sci., 27 (1982) 2139.
[12] A.Y. Liu, M.L. Cohen, Science 245 (1989) 841.
[13] A. Crunteanu, M. Charbonnier, M. Romand, R. Alexandrescu, Appl. Surf. Sci. 154-155 (2000) 393-398.
[14] A. Bearzotti, I. Fratoddi, L. Palummo, S. Petrocco, A. Furlani, C.L. Sterzo, M.V. Russo, Sens. Actuators B 76 (2001) 316.
[15] W. Jacob, Thin Solid Films, 326 (1998) 1-42.
[16] S. F. Durrant, N. Marçal, S. G. Castro, R. C. G. Vinhas, M. A. B. de Moraes, J. H. Nicola, Thin Solid Films 259 (1995) 139-145.
[17] R. d’Agostino, F. Cramarossa, V. Caloprico and R. d’Ettole, J. Appl. Phys., 54 (1983) 1284.
[18] J. Pola, Z. Bastl, A. Ouchi, Surf. Coat. Tech. 157 (2002) 55-58.
[19] N. Inagaki ed., Plasma Surface Modification and Plasma Polymerization, Technomic Publishing Company, Inc., Lancaster Basel (1996).
[20] S. Bhattacharyya, C. Cardinaud, G. Turban, J. Appl. Phys. 83 (1998) 4491.
[21] I. Kieser and M. Neusch, Thin Solid Films, 118 (1984) 203.
[22] H. Yasuda, M. O. Bumgarner, H. C. Marsh and N. Morosoff, J. Polym. Sci., Polym. Chem. Ed., 14 (1976) 195.
[23] I. Retzko, J.F. Friedrich, A. Lippitz, W.E.S. Unger, J. Electron Spectrosc. Relat. Phenom. 121 (2001) 111-129.
[24] K. Baba, R. Hatada, Surf. Coat. Tech. 136 (2001) 192-196.
[25] I. Fratoddi, P. Altamura, A. Bearzotti, A. Furlani, M.V. Russo, Thin Solid Films, 458 (2004) 292-298.
[26] S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, B. Rafferty, L. M. Brown, J. Schwan, D. F. Franceschini, and G. M. Mariotto, J. Appl. Phys. 81, (1997) 2626.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top