(54.236.58.220) 您好!臺灣時間:2021/02/28 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余柏隆
研究生(外文):Bo-lung Yu
論文名稱:電磁遮蔽之無電鍍銅硫粉末/EVA複合材料之研究
論文名稱(外文):Investigation of Electroless Plating CuxSy powders/EVA composites for EMI shielding
指導教授:黃繼遠
指導教授(外文):Chi-Yuan Huang
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:110
中文關鍵詞:無電鍍法電磁遮蔽共振現象凝聚
外文關鍵詞:electroless platingElectronmagnetic Interference Shielding Effectivresonances phenomenonagglomerates
相關次數:
  • 被引用被引用:3
  • 點閱點閱:304
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用無電鍍法以析鍍時間一小時,CuSO4\Na2S2O3\NaHSO3 (2:1:1)鍍液組成的條件下製備銅硫粉末,且經測試後得知該粉末具高導電特點。故應用銅硫粉末的特性,以混煉的方式將其添加高分子基材(EVA)中,並且在混煉的過程添加適當的添加劑使基材內的導電顆粒更容易形成導電通路以賦予複材具電磁波遮蔽效果。
本實驗以無電鍍過程中的溫度與攪拌速度作為影響銅硫粉末導電性的兩大變數,並且以不同的添加劑種類與含量作為混煉過程的變數。利用HP-XRD、SEM、EDS等分析,探討導電顆粒的導電性與粒徑、顆粒在基材內的分散情況以及機械性質影響等等,來解釋此類型高分子複合材料抗電磁波遮蔽值的變化。
由實驗結果顯示,無電鍍過程中的溫度對其製備出粉末的導電性有顯著的影響。雖然攪拌速度增加能將粉末平均粒徑由370.5nm降低至276.67nm,但對粉末其導電性的影響卻呈現具反曲點的趨勢。本實驗中所製備出的銅硫粉末其電阻值最低可達約0.86 mΩ。
不過即使粉末添加量高達200 phr,複材仍無明顯的抗電磁波遮蔽效果。但在混煉過程中加入125 phf的甘油,即使導電粉末添加量僅60 phr,複材抗電磁波遮蔽效果可提升至20~25 dB左右。但當導電粉末添加量提高至100 phr時,只需添加15 phf甘油就可以使複材達到最佳的電磁遮蔽能力,約35~40dB左右。並且當甘油添加量由5 phf 增加到125phf,在基材內一部份區域的粉末凝聚團之間的平均距離由53.9 μm減少到25 μm,但在另一部份區域內的粉末有減少的趨勢,也就是基材和粉末相分離的現象越嚴重。這些現象代表著在混煉過程中添加適量的甘油可藉由甘油高內聚力導致被甘油包覆的導電顆粒在基材內產生團聚現象,進而拉近顆粒間的距離且在複材內形成導電路徑因而改善複材遮蔽電磁波能力,即使導電粉末添加量尚未達到理論填充體積滲透值。當粉末添加量增加到150 phr時,複材抗電磁波遮蔽效果更可大幅提升到約50~60dB左右。
在添加粉末含量在100 phr且甘油含量達到15 phf以上時可在EMI曲線上明顯觀察到共振現象。經由SEM觀察後推測是由於導電顆粒在基材內形成適當的團聚現象導致電磁波通過複材時具有某種程度的共振現象。而此共振現象會隨著試片厚度的增加而有更顯著的趨勢。這是因為當試片厚度增加,電磁波通過試片時撞擊凝聚團產生的反射波再次撞擊另一凝聚團的機率隨之增加。並且當試片厚度較薄(≦2mm),複材在低頻範圍內會有較低的電磁遮蔽能力,這是由於較高波長的電磁波其穿透力較強所致。
In this investigation, the CuxSy (CuS, Cu4O3, Cu1.8S, CuS2 and Cu9S8) powders were produced by electroless plating as plating time was 1 hour with a bath of CuSO4.5H2O\Na2S2O3\NaHSO3 (2:1:1) and the electric conductivity of these particles could be affirmed that electric conductivity by the way of measuring. Then the CuxSy conductive powders were used as conductive fillers and were blended with EVA (ethylene-vinyl acetate) and additives (Zn-ST, Lica38 and glycerol) by the mixer (Brabender Plasti-Corder PLE-330) in order to form polymeric composites those owned the Electronmagnetic Interference Shielding Effectiveness (EMI SE) due to the connected network of the conductive particles in matrix.
In our electroless plating, the temperatures (65, 80, 95℃) and the stirring speeds (300, 600, 900rpm) were chosen as operating parameters. By the way, the effects of different type and variety content of additives in the compounding process were also investigated. Meanwhile, the influences of the fillers contents and the sample thickness on the absorption resonances phenomenon of composites were observed. The resistance and particle sizes of fillers, cross section morphology and CuxSy powders dispersion, mechanical properties and electronmagnetic interference shielding effectiveness (EMI SE) of polymeric composites were detected by 4-point-probe method, SEM, FE-SEM, HP-XRD, EDS, EMI measurements, respectively.
Experimental results revealed that temperature has significant effect on electric conductivity of powders. However, stirring speed had the varied effect on the resistance of fillers even if it can reduce effectively average particle size from 370.5nm to 276.67nm. The minimum resistance value of CuxSy powders can reach 0.86 mΩ in the operating parameters (300rpm/95℃).
After CuxSy powders were mixed with EVA by brabender, it was in vain to possess EMI SE effect even if fillers contents rise up to 200 phr. However, EMI SE value improved obviously to 20~25dB with the fillers contents only retained 60 phr as 125 phf glycerol was added into composites. However, it only needed 15 phf contents of glycerol that EMI SE of composites achieved maximum effect (35-40dB) as the fillers content increased as 100 phr. When the glycerol contents were increased from 5 phf to 125 phf, the average distance between agglomerates in a partial regions of matrix will decrease from 53.9 μm to 25 μm but the dispersing density of fillers in others regions of matrix will decrease. The phenomenon means that the network could be formed in the composites due to glycerol has strong cohesion even if fillers volume contents does not reach percolation value. Consequently, EMI SE value will reach 50~60dB as the fillers content increased to 150 phr and the glycerol content was 15 phf.
Meanwhile, the resonance phenomenon occurred as the fillers contents ran up to 100 phr and glycerol contents ran up to 15 phf. The phenomenon resulted from agglomerates of conductive fillers and was observed by SEM. And the thickness of sample also affected directly the resonances phenomenon. It is assumed that the probability of the electromagnetic wave, which is reflected by one filler agglomerate, impacts on another filler agglomerate will increase with the increasing of sample thickness. Meanwhile, it had inferior EMI SE in lower frequency (30~500MHz) as the sample thickness is thinner (≦2mm) due to the longer wavelength electromagnetic wave has stronger transmittance.
CHAPTER
1 Introduction
2 Theories and Literature Reviews
2.1 Electrical Properties of Polymers
2.2 Materials for EMI Shielding
2.2.1 Polymeric Materials
2.2.2 Polymeric Materials for EMI
2.2.2.1. Intrinsic Conductive Polymers (ICPs)
2.2.2.2. Surface Conductive Materials Coating
2.2.2.3.Conductive Fillers Filled Composites
2.3 The Mechanisms of Conductive Polymeric Materials
2.3.1. Conductive Mechanism of ICPs
2.4 Calculate the EMI Shielding Effectiveness
2.4.1 Calculation
2.4.2 Reflection
2.4.3 Absorption
2.4.4 Multiple reflections
2.5 Measure Methods of EMI Shielding
2.6 Measure Methods of Near-Field
2.6.1 Measurement Methods of Near-Field
2.6.1.1. Dual Chamber Method
2.6.1.2. Dual TEM Cell
2.6.2 Measurement Methods of Far-Field
2.6.2.1. Coaxial Transmission Line Method
2.6.2.2. KEC Method
2.6.2.3. Waveguide Method
2.6.2.4. Free Space Method
2.7 Fundamental Concept of Electroless Plating
3 Experimental Procedure
3.1 Materials
3.2 Instruments
3.3 Procedure
3.3.1 The selection and procedure of conductive fillers
3.3.2 Compounding Process
3.3.3 Compression Molding
3.4 Characteristic Test and Analysis
3.4.1 Resistivity Measurement
3.4.2 EMI SE Measurement
3.4.3 High Power X-ray Diffractometer
3.4.4 Scanning Electron Microscope (SEM) with Energy Dispersive
3.4.5 Mechanical Properties test
4 Results and Discussion
4.1 The Selection of Operating Parameters of Electroless Cu Process
4.1.1 The Resistivity of Fillers Measurement
4.1.2 Structure Analysis by HP-XRD
4-2 The Selection of Additives
4-3 Influence of Glycerol Content on EMI Shielding
4-4 Influence of Glycerol Content as High Fillers Content
4-5 Influence of stirring speed on EMI shielding
4-6 The Phenomenon of Absorption Resonances
4.6.1 Influence of Fillers Content on Absorption Resonances
4.6.2 Influence of Sample Thickness on Absorption Resonances
4-7 Mechanical Properties
5 Conclusions
References
References
1. H.K. Kim, M.S. Kim, K. Song, Y.H. Park, S.H. Kim, J. Joo, J.Y. Lee, Synth. Met., 135–136 (2003) 105.
2. E.G. Han, E.A. Kim, K.W. Oh, Synth. Met., 123 (2001) 469.
3. C.Y. Huang, W.W. Mo, M.L. Roan, Surf. Coat. Technol., 184 (2004) 123.
4. C.Y. Huang, W.W. Mo, Surf. Coat. Technol., 154 (2002) 55.
5. P.K. Pramanik, D. Khastgir, T. N. J. Saha, J. Elast. Plast., 23(1991), 345.
6. K.P. Sau, T.K. Chaki, A. Chakraborty, D. Khastgir, Plast. Rubb. Comp. Proc. Appl., 26(7), (1997) 291.
7. R. Sakamota, Int. Polym. Sci. Technol., 13(1987) T/40.
8. D.M. Bigg, Polym. Eng. Sci., 19(1979), 1188.
9. E.K. Sichel, Carbon Black Polymer Composites, New York, Marcel Dekker, (1982) 90-98.
10. D. M. Bigg, W. Mirick, D. E. Stutz, Polym. Test., 5(1985), 169.
11. B. Tachym, H. Sadolski, Phys. Stat. Sol., 34(1976), 657.
12. T. Asada, Int. Polym. Sci. Technol., 14(1987), T/4.
13. K.S. Chou, K.C. Huang, Z.H. Shih, J. Appl. Polym. Sci., Vol. 97(2005) 128–135.
14. C.K. Chen, R. Liepins, Electrical Properties of Polymers: Chemical Principle, New York, Macmillan Publishing Company, (1987).
15. J.K. Kocsis, Polypropylene: an A – Z Reference., Dordrecht, Kluwer Academic Publishers, (1999) 183.
16. D.D.L. Chung, Carbon, 39(2), (2001) 279.
17. F. Bradish, Conductive Composites for Shielding, SPI, Composites Institute, 33rd Annual Conference, Section 4A, (1979).
18. R. Simon Ed., Shielding Through Conductive Plastics, SPE, New York, Antec, (1980).
19. C. Christopoulos Ed., Principles and Techniques of Electromagnetic Compatibility, New York, Crc Press, (1995).
20. C.Y. Hung, W.W. Mo, M.L. Roan, Surf. Coat. Technol., 184 (2004) 163-169.
21. P.B. Jana, A.K. Mallick, S.K. De, IEEE T. Electromagn. C., 34 (1992) 4.
22. S.P. Pappas Ed., Radiation Curing Science and Technology, New York, Springer, (1992).
23. L.W. Shacklette, R.R. Chance, D.M. Ivory, G.G. Miller, R.H. Baughman, Synth. Met., 1 (1979) 307.
24. G. Street, T. Clarke, M. Kroumbi, K. Kanazawa, V. Lee, P. Fluger, J. Scott, G. Weiser, Mol. Cryst. Liq. Cryst., 83(1982) 253.
25. Y.S. Kang, H.J. Lee, J. Namgoong, B. Jung, H. Lee, Polymer, 40(9),
(1999) 2209.
26. D.C. Liao, K.H. Hsieh, Y.C. Chern, K.S. Ho, Synth. Met., 87(1),
(1997) 61.
27. C.D. Storms, Met. Finish., 81(2), (1983) 47.
28. V.G. Kulkami, W.R. Mathew, C.J. Chapbell, C. J., J. Vinyl. Addit. Techn., 14(2), (1992) 123.
29. K.F. Schoch, W.A. Byers, L.J. Buckley, Synth. Met., 72, (1995) 13.
30. J. Joo, MaeDiarmid and A.J. Epstein, Proc. Antec., 53(1995) 1672.
31. D.R.J. White, M. Mardiguian Eds., Electromagnetic Shielding Interference Control Technologies, Virginia, Gainesville, (1988).
32. J.C. Huang, Adv. Polym. Tech., 14(2), (1995) 137.
33. W. Anders, Electroactive Polymer Materials: State of the Art Review of Conductive Polymers, Lancaster, Technomic Publishing Company, (1986) 257.
34. B.S. Raymond, Conductive Polymers, New York, Springer, (1981) 498.
35. T.A. Skotheim, Handbook of Conducting Polymers., New York, Crc Press, (1997) 218.
36. A.G. MacDiarmid, A.J. Heeger, Synth. Met., 1 (1980) 101.
37. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B., 22 (1980) 2099.
38. Y.R. Lin-Liu, K. Maki, Phys. Rev. B., 22 (1980) 5754.
39. A.R. Bishop, D.K. Campbell, K. Fesser, Mol. Cryst. Liq. Cryst., 77 (1981) 253.
40. J.T. Gammel, J.A. Krumhansl, Phys. Rev. B., 24 (1981) 1035.
41. J.L. Brsdas, R.R. Chance, R. Silbey, Phys. Rev. B, 26, (1982) 5841.
42. Y. Tornkiewicz, T.D. Schultz, H.B. Brom, Phys. Rev. B., 24 (1981) 4348.
43. D.R.J. White, M. Mardiguian, Eds., Electromagnetic Shielding
Interference Control Technologies, Virginia, Gainesville, (1988).
44. D.D.L. Chung, O.I. Fisun, A.N. Goltsov, V.N. Kadantsev, Y.K. Alexandrov, Materials for Biological Safety Through Electromagnetic Shielding, 523-531.
45. H. Rahman, J. Dowling, P.K. Saha, J. Mater. Process. Technol., (1995), 21-28.
46. C.A. Grimes, Proceedings of the 1994 IEEE Aerospace Applications Conference, IEEE, Los Alamitos, Computer Society Press, CA, (1994), 211-221.
47. W.J. Biter, P.J. Jamnicky, W. Coburn, Proceedings of the 1994 7th International. SAMPE Electronics Conference, Vol. 7, SAMPE, Covina, CA, (1994), 234-242.
48. P.F. Wilson, M.T. Ma, IEEE T. Electromagn. C., 30(3), (1988) 251.
49. J.A. Catrysse, M. DeGoeije, W. Steenbakkers, L. Anaf, IEEE T. Electromagn. C., 35(4), (1993) 440.
50. J. Wang, S.S. Cheng, V.V. Varadan, V.K. Varadan, J. Wave-Mater. Interact., 10(1), (1995) 61.
51. D.K. Ghodgaonkar, V.V. Varadan, V.K. Varadan, IEEE T. Instrum. Meas., IM-38(3), (1989) 789.
52. C.Y. Huang, J.F. Pai, Eur. Polym. J., 34(2), (1998) 261.
53.王大倫, 實用電鍍學, 徐氏文教基金會出版, (2002) 298-308.
54. A. Brenner, G.E. Riddell, J. Res. Natl. Inst. Stan., 37 (1946) 1.
55. L.F.Spencer, Met. Finish., 72(10), (1974) 35.
56. S.S. Tzeng, F.Y. Chang, Mater. Sci. Eng., A 302 (2001) 258-267.
57.吳宗蔚, 無電鍍銅加工條件對聚丙烯腈織物電磁波遮蔽效應之影響, 台灣科技大學碩士論文, (2002) 4-43.
58. H.T. Ng, S. F. Y. Li, L. Chan, F.C. Loh, K.L. Tan, J. Electrochem. Soc., 145 (1998) 3301-3305.
59.洪志緯, 抗EMI無電鍍銅聚丙烯腈高分子奈米複合材料之製備與研究, 大同大學碩士論文, (2005) 4-51.
60. C.Y. Hung, J.F. Pai, J. Appl. Polym. Sci., 63 (1997) 115.
61. S.M. Pimenoy, G.A. Shafeev, V.I. Konov, E.N. Loubnin, Diam. Relat. Mater., 5 (1996) 1042-1047.
62.鄭銘章, 化學鍍銅製程參數對聚丙烯腈奈米複材性質影響之研究, 大同大學碩士論文, (2003) 29-34.
63. C.Y. Huang, T.W. Chiou, Eur. Polym. J., 34(1), (1998) 37.
64.王傳中, 利用短桿菌Brevibacterium sp最適化生產麩酸之研究, 大同大學碩士論文, (1997).
65. A. Ogunsola, Harmonization of Shielding-Effectivness Standards for Enclosures, Compliance Engineering, [Online]
Available:http://www.ce-mag.com/archive/01/Spring/Ogunsola.
66. W.M. Arnold, P. Harris, C.A. Partridge, M.K. Andrews, IEEE Annual Report–Conference on Electrical Insulation and Dielectric Phenomena, San Francisco, (1996) 20.
67. Y.K. Hong, C.Y. Lee, C.K. Jeong, D.E. Lee, K. Kim, and J. Joo, Rev. Sci. Instrum., Vol. 74, No. 2 (2003).
68. ASTM D4935-99, Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials, ASTM (1999).
69. ASTM D638-99, Standard Test Method for Tensile Properties of Plastics, ASTM (2001).
70. A. Moulart, C. Marrett, J. Colton, Polym. Eng. Sci., Vol. 44, No. 3 (2004).
71.莫文偉, 無電鍍金屬/碳纖維對纖維強化型ABS複材電磁波干擾遮蔽影響之研究, 大同大學博士論文, (2002) 77-96.
72. Y.S. Diamand, V.M. Dubin, Microelectron. Eng., 33 (1997) 47-58.
73. S.J. Choi, J. Choi, J. Alloy. Comp., 356-357 (2003) 720-724
74. S. Kirkpatrick, Rev. Mod. Phys., (1973) 45.
75. J. Sandlera, M.S.P. Shaffera, A.H. Windle , Polymer, 40 (1999) 5967–5971
76. Mustafa, H. Usui, M. Ishizuki, Kor. Australas. Rheol. J., Vol. 15, No. 1 (2003) 19-25
77. Tsuneo, Okubo, Colloids. Surf., 109 (1996) 77-88
78. J.S. Lee, F.C. Chang, Polymer. Eng. Sci., Vol. 44, No. 10 (2004) 1885-1889.
79. A.-L. Adenot-Engelvin, J. Magn. Magn. Mater., 300 (2006) 33-37.
80.孔守中, 鎳鋅鐵氧磁體奈米粒子生成動力學及其電磁波吸收行為之研究, 中原大學碩士論文, (2003) 19-24.
81. G. Sun, J. Zheng, Sci. Tech. Adv. Mater., 6 (2005) 848–854.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔