跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊上旗
研究生(外文):Shang-Chi Yang
論文名稱:機械合金法合成三元及四元銅-鈦基非晶質合金之研究
論文名稱(外文):Synthesis of ternary and quaternary Cu-Ti-based amorphous alloys by mechanical alloying technique
指導教授:胡家榮胡家榮引用關係
指導教授(外文):Chia-gung Hu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:146
中文關鍵詞:機械合金非晶質相過冷液態區玻璃轉換銅基合金玻璃形成能力
外文關鍵詞:Mechanical alloyingAmorphous phaseSupercooled liquid regionGlass transitionCu-based alloysGFA
相關次數:
  • 被引用被引用:2
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討以機械合金法(Mechanical Alloying)合成銅基(Cu-based)合金粉末之非晶質化行為,再以XRD、SEM觀察粉末在機械合金過程中微觀組織的變化與相穩定性,用DSC熱分析儀來研究非晶質合金粉末在固定加熱速率下的熱穩定行為。幾種非晶質粉末在結晶反應發生前發現有寬廣過冷液態區DT的存在,其寬廣過冷液態區定義是在玻璃轉換溫度(Tg)與結晶化溫度(Tx)之間(DT=Tx-Tg),Cu50Ti40Fe10為117.95 K、Cu50Ti35B15為77.62 K、Cu60Ti40Mg10為73.99 K、Cu55Ti40Sn5為91.82 K、Cu50Ti40Sn10為95.02 K、Cu60Ti35Sn5為81.13 K、Cu50Ti45Sn5為102.3 K、Cu50Ti40Sn9B1為103.25 K、Cu50Ti40Sn7B3為95.86 K、Cu50Ti40Sn5B5為110.88 K,故在Cu-Ti-Sn非晶質合金系統中添加微量的B元素可增進玻璃形成能力(GFA)。
This study examined the amorphization behavior of Cu-based alloy powders synthesized by mechanical alloying technique. The microstructural evolution during mechanical alloying of the mixed powders was investigated by both X-ray diffraction(XRD)and scanning electron microscopy(SEM). The phase stabilities of the as-milled powders were analysed by the differential scanning calorimeter. Several amorphous powders were found to exhibit a wide supercooled liquid region before crystallization. The temperature interval of the supercooled liquid region defined by the difference between the glass transition temperature(Tg)and the crystalline temperature(Tx), ie DT(DT=Tx-Tg), is 117.95 K for Cu50Ti40Fe10, 77.62 K for Cu50Ti35B15, 73.99 K for Cu60Ti40Mg10, 91.82 K for Cu55Ti40Sn5, 95.02 K for Cu50Ti40Sn10, 81.13 K for Cu60Ti35Sn5, 102.3 K for Cu50Ti45Sn5, 103.25 K for Cu50Ti40Sn9B1, 95.86 K for Cu50Ti40Sn7B3, and 110.88 K for Cu50Ti40Sn5B5. As the results demonstrated, small addition of B significantly improved the glass forming ability(GFA)of the Cu-Ti-Sn amorphous alloy.
中文摘要………………………………………………………..I

Abstract……......………………………………………………Ⅱ

Contents………………………………………...…………..…Ⅲ

List of Tables……..…………………………………………...Ⅸ

List of Figures……………….………………………………...Ⅹ








Chapter 1. Introduction……………………………………….1

Chapter 2. References Review………………………………..3
2.1 Characteristics of amorphous alloy and application domain………………………….3
2.1.1 Applications of the high strength characteristic………………………..3
2.1.2 Applications of the high abrasion resistivity characteristic……………...4
2.1.3 Applications of the corrosion resistivity.4
2.1.4 Applications of the soft magnetism nature………………………………...4
2.2 The methods of preparing amorphous alloys….6
2.3 The influence of various parameters upon the Mechanical Alloying process………………..7
2.3.1 The ball milling strength……………….7
2.3.2 Contaminants…………………………..8
2.3.2.1 The ball milling tool…………...8
2.3.2.2 The ball milling atmosphere…...9
2.3.2.3 The surfactant………………….9
2.3.3 Temperature…………………………..10
2.4 The determination of amorphous phase…….10
2.4.1 X-ray Diffraction……………………..10
2.4.2 DSC…………………………………...10
2.4.3 TEM…………………………………..11
2.5 The amorphous mechanism of Mechanical Alloying…………………………………...11
2.6 The copper-based amorphous alloy………...12
2.6.1 Cu-Zr…………………………………14
2.6.2 Cu-P…………………………………..14
2.6.3 Cu-Zr-Ti……………………………...14
2.6.4 Cu-Hf-Ti……………………………...15
2.6.5 Cu-Zr-Ni…………………………...…15
2.6.6 Cu-Ti-Zr-Ni…………………………..15
2.6.7 Cu-Zr-Ti-Be…………………………..16
2.6.8 Cu-Zr-Ti-Y…………………………...17
2.6.9 Cu-Ni-Ti-Y…………………………...17
2.6.10 Cu-Ti-Ni-Zr-Sn……………………..17
2.6.11 Cu-Ti-Zr-Ni-Sn-Si…………………..18

Chapter 3. Experimental Procedures………………………..19
3.1 The Mechanical Alloying processes…...……19
3.2 The examination of powder characteristics…19
3.2.1 X-ray diffraction analysis……………..20
3.2.2 DSC analysis…………………………..20
3.2.3 SEM observation……………………...20

Chapter 4. Results and Discussions…………………………21
4.1 Cu-Ti-Al ternary alloy system………………21
4.1.1 X-ray diffraction analysis……………..21
4.1.2 DSC analysis…………………………..21
4.2 Cu-Ti-Fe ternary alloy system………………21
4.2.1 X-ray diffraction analysis……………..21
4.2.2 DSC analysis…………………………..22
4.3 Cu-Ti-Si ternary alloy system……………….22
4.3.1 X-ray diffraction analysis……………..22
4.3.2 DSC analysis…………………………..23
4.4 Cu-Ti-B ternary alloy system………..…...…23
4.4.1 X-ray diffraction analysis……………..23
4.4.2 DSC analysis…………………………..23
4.5 Cu-Ti-Mg ternary alloy system……………...24
4.5.1 X-ray diffraction analysis……………..24
4.5.2 DSC analysis…………………………..24
4.6 Cu-Ti-Mg-Si quaternary alloy system……....24
4.6.1 X-ray diffraction analysis……………..24
4.6.2 DSC analysis…………………………..25
4.7 Cu-Ti-Sn ternary alloy system………………25
4.7.1 X-ray diffraction analysis……………..25
4.7.2 DSC analysis…………………………..26
4.8 Cu-Ti-Sn-B quaternary alloy system………..26
4.8.1 X-ray diffraction analysis……………..26
4.8.2 DSC analysis…………………………..27
4.8.3 SEM powder shape observation…...….27
4.9 The relationship between component elements and the supercooling liquid region………….28
4.10 The amorphous behavior…………………..31
4.11 The crystalline behavior…………………...32

Chapter 5. Conclusion………………………………………34

Chapter 6. References……………………………………….36
1.W. L. Johnson, Prog. Mater. Sci., 30(1986)81.
2.X. L. Yeh, K. Samwer, and W. L. Johnson, Appl. Phys. Lett., 42(1983)242.
3.R. B. Schwaz and W. L. Johnson, Phys. Rev. Lett., 51(1983)415.
4.C. C. Koch, O. B. Cavin, C. G. Mckamey, and J. O. Scarb-rough, Appl. Phys. Lett., 43(1983)1017.
5.R. B. Schwarz, R. R. Petrich, and C. K. Saw, J. Non-cryst. Solid., 76(1985)281.
6.P. Y. Lee and C. C. Koch, J. Non-cryst. Solid., 94(1987)88.
7.G. Veltl, B. Scholz, and H. D. Kunze, Mate. Sci. and Eng., A134(1991)1410.
8.J. Eckert, L. Schultz, and K. Urban, Acta Metall. Mater., 39(1911)1497.
9.L. Schultz, K. Schnitzke, J. Wecker, and J. Mag. Mag. & Mater., 80(1989)115.
10.F. Gartner and R. Bormann, J. Physique France(Colloques)., 51(1990)C4-95.
11.C. C. Koch and M. S. Kim, J. Physique., 46(1985)C8-573.
12.A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, J. Non-cryst. Solid, 304(2002)200-209.
13.A. Inoue, T. Aoki, and H. Kimura, Mater. Trans., Vol. 38, No. 2(1997)175-178.
14.X. M. Wang and A. Inoue, Mater. Trans., Vol. 40 No. 7(1999)634-642.
15.H. Z. Kong, Y. Li, J. Ding, and J. Mag. Mater., 217(2000)65-73.
16.H. Choi-Yim, R. Busch, W. L. Johnson, and J. Appl. Phys., Vol. 83(1998)7993-7997.
17.S. Yi, T. G. Park, and D. H. Kim, J. Mater. Res., Vol. 15, No. 11(2000)2425-2430.
18.廖美芳,機械合金法合成三元及四元銅-鈦-鎳基非晶質合金之研究,私立大同大學碩士論文,(2005),第33頁。
19.鄭振東編譯,非晶質金屬漫談,建宏出版社,(1990),第5頁。
20.S. Takayama, J. Materials Sci., Vol. 11(1976)164.
21.F. E. Luborsky(ed), Amorphous Metallic Alloy, Butlerworth �t Co.(publishers) Ltd.,(1983)5.
22.J. C. M. Li, Unpublished paper.
23.K. Cho, Intl. Conf. on Rapidly Quenched Metals Ⅳ, Sendai,(1981), p. 1479.
24.T. Masumoto, Intl. Conf. on Rapidly Quenched Metals Ⅳ, Sendai,(1981), p. 6.
25.H. Mastsuoka and Okamota, Intl. Conf. on Rapidly Quenched Metals Ⅴ, Vol. Ⅱ(1984), p. 1633.
26.高道德,材料科學,17B卷,第三期,第86-93頁。
27.W. Klement, Jun., R. H. Willens, and P. Duwez; Mature, Vol. 187(1960)869.
28.F. E. Luborsky(ed.), Amorphous Metallic Alloys, Butlerworth & Co. (publishers)Ltd.,(1983)27.
29.S. J. Savage and F. H. Froes, J. of Metals,(1984)20.
30.J. S. Benjamin and T. E. Volin, Metall. Trans., 5(1974)1923.
31.E. Ermakov, E. E. Yurchikov, and V. A. Barinkov, Fiz. Metal. Metalloved., 52(1981)1184.
32.E. Ermakov, E. E. Yurchikov, and V. A. Barinkov, Fiz. Metal. Metalloved., 54(1982)935.
33.M. Sherf EI-Eskandarany, K. Aoki, H. Itoh, and K. Suzuki, J. Less-Common Met., 167(1991)235.
34.M. Sherif EI-Eskandarany, K. Aoki, and K. Suzuki, J. Alloy and Compounds, 177(1991)229.
35.K. Y. Wang, G. L. Chen, and J. G. Wang, Scrip. Metall. Et Mater., 31(1994)87.
36.B. Schwarz and C. C. Koch, Appl. Phys. Lett., 49(1986)146.
37.A. Inoue, Mater. Sci. Eng., A226(1997)357.
38.M. Seidel, J. Eckert, and L. Schultz, Mater. Sci. Forum, 235(1997)29.
39.P. M. Tech. Trends, MPR, Feb.(1994)22.
40.K. Y. Wang, T. D. Shen, H. G. Jiang, M. X. Quan, and W. D. Wei, Mater. Sci. and Eng., A179/A180(1994)215.
41.A. Inoue and T. Zmasumoto, Mater. Trans., Vol. 30(1989)965-972.
42.A. Inoue, K. Ohtera, K. Kita, and T. Masumoto, Jpn. J. Appl. Phys., 27(1988)2248-2251.
43.A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans., Vol. 31(1990)177-183.
44.A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Mater. Trans., Vol. 42, No. 8(2001)1800-1804.
45.A. Inoue and T. Masumoto, J. Mater. Sci., 19(1984)3786-3795.
46.K. J. Kim, K. Sumiyama, and K. Suzuki, J. Non-cryst., 168(1994)232-240.
47.A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Mater. Trans., Vol. 42, No. 6(2001)1149-1151.
48.A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Acta Mater. 49(2001)2645-2652.
49.C. J. Hu and P. Y. Lee, Materials Chemistry and Physics, 74(2002)13-18.
50.X. D. Liu, M. Nagumo, and M. Umemoto, Mater. Sci. Eng. A252(1998)179-187.
51.X. D. Liu, M. Nagumo, and M. Umemoto, Mater. Trans. Vol. 39, No. 3(1998)343-350.
52.T. Zhang, K. Kurosaka, and A. Inoue, Mater. Trans., Vol. 42, No. 10(2001)2042-2045.
53.P. Y. Lee, C. J. Yao, J. S. Chen, L. Y. Wang, R. R. Jeng, and Y. L. Lin, Materials Science and Engineering, A375-377(2004)829-833.
54.C. Li, J. Saida, M. Kiminami, and A. Inoue, J. Non-cryst., 261(2000)108-114.
55.E. S. Park, H. K. Lim, W. T. Kim, and D. H. Kim, J. Non-cryst. Solid., 298(2002)15-22.
56.W. Weeber and H. Bakker, Phys. B, 153(1988)93.
57.C. Polites, Physica. B., B135(1985)286.
58.F. Petzoldt, B. Scholz, and H. -D. Kunze, Mater. Sci, and Eng., 97(1988)25.
59.E. Hellstern and L. Schultz, Appl. Phys. Lett., 48(1986)124.
60.A. W. Weeber, A. J. Wester, W. J. Hagg, and H. Bakker, Physica B., 145(1987)349.
61.M. Lasocka, Mater. Sci. Eng. 23(1976)173.
62.H. E. Kissinger, J. Res. Natl. Bur. Stand. 57(1956)217.
63.F. R. de Boer, R. Boom. W. C. M. Mattens, A. R. Miedema, and A. K. Niessen ed., Cohesion in Metals, Elsevier Science Publishers, North-Holland(1988).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top