跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:b669:e553:ec7:b9d5) 您好!臺灣時間:2024/12/03 07:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張登貴
研究生(外文):Teng-Kuei Chang
論文名稱:基於秘密分享及小波轉換之音訊特徵萃取
論文名稱(外文):An Audio Feature Extraction Scheme Based on Secret Sharing and Wavelet Transform
指導教授:謝尚琳謝尚琳引用關係
指導教授(外文):Shang-Lin Hsieh
學位類別:碩士
校院名稱:大同大學
系所名稱:資訊工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:64
中文關鍵詞:特徵萃取離散小波轉換秘密分享機制粒度
外文關鍵詞:discrete wavelet transformsecret sharing schemegranularityfeature extractionTorus automorphism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種新的音訊特徵抽取及音訊辨識的機制。這個機制於小波轉換後的頻率係數上抽取特徵,並且利用秘密分享機制的概念來增強辨識的效能。因此,在不使辨識效能降低的條件下,可以縮短用來做音訊辨識的最短音訊長度。其中我們使用一張二元化的share影像來取代儲存在資料庫中的特徵。此系統是藉由以下三個步驟來辨識一個未知的音訊。1.萃取音訊特徵。2.將此特徵與share影像解碼。3.將解碼出來的結果與一張不變的logo做比對。實驗結果證明此機制是可信賴的並且能抵抗一般的音訊處理。此外,用來做音訊辨識的最短長度可縮短為1.1秒,低於前人之研究。
A novel audio feature extraction and identification scheme is proposed in this thesis. The proposed scheme uses the discrete wavelet transform (DWT) and the concept of secret sharing scheme to improve the robustness and reliability. Hence, the granularity, the minimal length of audio, needed for identification in an audio fingerprinting system, can be reduced without decreasing the efficiency of the system. The scheme employs binary share images to substitute the hash values and the fingerprints stored in the database. The suspect audio signal is then identified by the following steps: 1. Extract the features of the suspect audio. 2. Decode the features with the share images in the database 3. Compare the decoded image to an invariant logo. The experimental results prove the scheme is reliable and robust to some common audio processes. Additionally, the granularity can be reduced to 1.1 seconds, which is less than that of previous work.
ACKNOWLEDGEMENTS i
ENGLISH ABSTRACT ii
CHINESE ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
CHAPTER
1 INTRODUCTION 1
1.1 Motivation 1
1.2 Thesis Organization 3
2 Related Background 4
2.1 Audio Fingerprinting 4
2.2 Discrete Wavelet Transform 7
2.3 Secret Sharing Scheme 8
2.4 Torus Automorphism 9
3 The Proposed Scheme 10
3.1 Preprocessing 12
3.2 Framing 12
3.3 Feature Extraction 12
3.4 Scrambling 15
3.5 Encoding 16
3.6 Decoding 17
3.7 Reduction 18
3.8 Algorithms 19
4 Experimental Results 23
4.1 Robustness Experiments 24
4.2 Discrimination Experiment 47
5 Conclusions 49
References 51
[1]L. Gomes, P. Cano, E. Gómez, M. Bonnet, and E. Batlle, "Audio Watermarking and Fingerprinting: For Which Applications?," Journal of New Music Research, Volume 32, Number 1, pp. 65–81, Mar. 2003.
[2]J.S. Seo, M. Jin, S. Lee, D. Jang, S. Lee, and C.D. Yoo, "Audio Fingerprinting Based on Normalized Spectral Subband Centroids," IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP '05), Volume 3, pp. 213 – 216, Mar. 2005.
[3]RIAA/IFPI. "Request for Information on Audio Fingerprinting Technologies," http://www.riaa.com/, Jul. 2001.
[4]P. Cano, E. Batlle, T. Kalker and J. Haibma, "A Review of Algorithms for Audio Fingerprinting," IEEE International Workshop on Multimedia Signal Processing, (MMSP '02), pp. 169 – 173, Dec. 2002.
[5]A. Ramalingam and S. Krishnan, "Gaussian Mixture Modeling Using Short Time Fourier Transform Features for Audio Fingerprinting," IEEE International Conference on Multimedia and Expo, ( ICME '05), pp. 1146 – 1149, Jul. 2005.
[6]J. Haitsma and T. Kalker, "A Highly Robust Audio Fingerprinting System," Proceeding of International Symposium on Musical Information Retrieval, (ISMIR '02), pp. 107-115, Oct. 2002.
[7]J. Haitsma, T. Kalker and J. Oostveen, "Robust audio hashing for content identification," Proceeding of the Content-Based Multimedia Indexing, (CBMI '01), Sept. 2001.
[8]R. Lancini, F. Mapelli and R. Pezzano, "Audio Content Identification by using Perceptual Hashing," IEEE International Conference on Multimedia and Expo, ( ICME '04), Volume 1, pp. 27-30, Jun. 2004.
[9]S. L. Hsieh and H. C. Wang, "Feature Extraction for Audio Fingerprinting Using Wavelet Transformation," National Computer Symposium, (NCS '05), 2005.
[10]S. L. Hsieh and B. Y. Huang, "A Copyright Protection Scheme for Gray-Level Images Based on Image Secret Sharing and Wavelet Transformation," Proceeding of International Computer Symposium, (ICS '04), 2004.
[11]Bin-Yuan Huang and Shang-Lin Hsieh, "A Copyright Protection Scheme for Gray-Level Images Based on Image Secret Sharing and Wavelet Transformation," Master Thesis, Tatung University, July 2004
[12]P. Cano, E. Batlle, E. G´omez, L. de C. T. Gomes, and M. Bonnet, "Audio Fingerprinting Concepts and Applications," International Conference on Fuzzy Systems and Knowledge Discovery, Nov. 2002.
[13]O. Farooq and S. Datta, "Wavelet-based Denoising for Robust Feature Extraction for Speech Recognition," Electronics Letters, Volume 39, Issue 1, pp. 163 – 165, Jan. 2003.
[14]J.N. Gowdy and Z. Tufekci, "Mel-Scaled Discrete Wavelet Coefficients for Speech Recognition," IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP '00), Volume. 3, pp. 1351 – 1354, Jun. 2000.
[15]C. C. Chang, J. Y. Hsiao, and C. L. Chiang, "An Image Copyright Protection Scheme Based on Torus Automorphism," First International Symposium on Cyber Worlds, (CW'02), pp. 0217, Nov. 2002.
[16]F. Mapelli and R. Lancini, "Audio Hashing Technique for Automatic Song Identification," International Conference on Information Technology: Research and Education, (ITRE '03), pp.84 – 88, Aug. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top