|
[1]J. H. Ge, P. M. Frank, and C .F Lin, “Robust H∞ state feedback control for linear systems with state delay and parameter uncertainty,” Automatica., vol. 32, no. 8, pp. 1183-1185, 1996. [2]M. S. Mahmoud and N .F. Al-Muthairi, “Quadratic stabilization of continuous time systems with state-delay and norm-bounded time-varying uncertainties,” IEEE Trans. Automat. Contr., vol. 39, no. 11, pp. 2135-2139, 1994. [3]S. H. Esfahani and I. R. Petersen, “An LMI approach to output feedback guaranteed cost control for uncertain time-delay systems,” Int. J. Robust and Nonlinear Control., vol. 10, no. 3, pp. 157-174, 2000. [4]C. E. de Souza and X. Li, “Delay-dependent robust H∞ control of uncertain linear state-delayed systems,” Automatica., vol. 35, no. 7, pp. 1313-1321, 1999. [5]E. Cheres, S. Gutman, and Z. J. Palmor, “Stabilization of uncertain dynamic systems including state delay,” IEEE Trans. Automat. Contr., vol. 34, no. 11, pp.1199-1203, 1989. [6]K. K. Shyu and J. J. Yan, “Robust stability of uncertain time delay systems and its stabilization by variable structure control,” Int. J. Control., vol. 57, pp. 237-246, 1993. [7]P. Kachroo, “Existence of solution to a class of nonlinear convergent chattering-free sliding mode control systems,” IEEE Trans. Automat. Contr., vol. 44, no. 8, pp. 1620-1624 1999. [8]P. Kachroo and M. Tomizuka, “Chattering reduction and error convergence in the sliding mode control of a class of nonlinear systems,” IEEE Trans. Automat. Contr., vol. 41 no. 7, pp.1063-1068, 1996. [9]V. I. Utkin, Sliding Modes and their Application in Variable Structure Systems, MIR, Moscow, 1978. [10]C. H. Chou and C. C. Cheng, “Design of adaptive structure controllers for perturbed time-varying state delay systems,” J. Franklin Inst., vol. 338, no. 1, pp. 35-46, 2001. [11]C. W. Tao, M. L. Chan, and W. Y. Wang, “Robust control of the mismatched systems with the fuzzy integral sliding controller,” Systems, Man and Cybernetics, 2003. IEEE International Conference on , vol. 4, pp. 3657 - 3662, 2003. [12]A. Poznyak, L. Fridman, and F. J. Bejarano, “Mini-max integral sliding-mode control for multimodel linear uncertain system,” IEEE Trans. Automat. Contr., vol. 49, no. 1, pp.97-102, 2004. [13]C. P. Hung, “Integral variable structure control of nonlinear system using a CMAC neural network learning approach,” IEEE Trans. Syst., Man. Cybern., B., vol. 34, no. 1, pp. 702-709, 2004. [14]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1994. [15]Y. C. Chang, “Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and approach,” IEEE Trans. Fuzzy Syst., vol. 9, no. 2, pp. 278-292, 2001. [16]H. X. Li and S. Tong, “A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems,” IEEE Trans. Fuzzy Syst., vol. 11, no. 1, pp. 24-34, 2003. [17]Y. Liu and X. Y. Li, “Robust adaptive control of nonlinear systems with unmodelled dynamics,” IEE Proc.-Control Theory Appl., vol. 151, no. 1, pp. 83-88, 2004. [18]C. C. Kung, T. H. Chen, and L. H. Kung, “Modified adaptive fuzzy sliding mode controller for uncertain nonlinear systems,” IEICE Trans. Fundamentals, vol. E88-A, pp. 1328-1334, 2005. [19]C. C. Kung and T. H. Chen, “Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical systems,” Fuzzy Sets and Systems, vol. 155, pp. 292-308, 2005. [20]Y. Xia, and Y. Jia, “Robust sliding-mode control for uncertain time-delay systems: an LMI approach,” IEEE Trans. Automat. Contr., vol. 48, no. 6, pp.1086-1092, 2003. [21]S. Oucheriah, “Exponential stabilization of linear delayed systems using sliding-mode controllers.” IEEE Trans. Circuits Syst. I, vol. 50, no. 6, pp.826-830, 2003. [22]C. T. Chen, and S. T. Peng; “A predictor-based sliding mode control strategy for nonlinear uncertain input-delay processes,” Control Conference, 2004. 5th Asian, vol. 3, pp. 1973-1981, 2004. [23]S. C. Qu, and Y. J. Wang; “Sliding mode control for a class of uncertain input-delay systems,” Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on, vol. 2, pp. 1184-1186, 2004 [24]S. A. Al-Shamali, O. D. Crisalle, and H.A Latchman, “An approach to stabilize linear systems with state and input delay,” American Control Conference, 2003. Proceedings of the 2003, vol. 1, pp. 875-880, 2003 [25]D. S. Yoo, and M. J. Chung, “A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties,” IEEE Trans. Automat. Contr., vol. 37, no. 6, pp.860-865, 1992. [26]Z. Artstein, “Linear systems with delayed controls: a reduction,” IEEE Trans. Automat. Contr., vol. 27, no. 4, pp.869-878, 1982. [27]T. Mori, K. Funkuma, and M Kueahara, “Simple stability criteria for single and composite linear systems with time delays,” Int. J. Control., vol. 34, no. 6, pp 1175-1184, 1981. [28]J. J. E. Slotine, and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey, 1991. [29]W. A. Coppel, Stability and asymptotic behavior of differential equations, Heath, Boston, 1965. [30]R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York, 1963. [31]L. E. El’sgol’ts, and S. B. Norkin, Introduction on the Theory and Application of Differential Equations with Deviating Arguments, Academic Press, New York, 1973. [32]V. Lakshmikantham, and S. Leela, Differential and Integral Inequalities, Academic Press, New York, 1969.
|